Step | Hyp | Ref
| Expression |
1 | | fvoveq1 7298 |
. . 3
⊢ (𝑥 = 0 →
(FermatNo‘(𝑥 + 1)) =
(FermatNo‘(0 + 1))) |
2 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 0 → (0...𝑥) = (0...0)) |
3 | 2 | prodeq1d 15631 |
. . . 4
⊢ (𝑥 = 0 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...0)(FermatNo‘𝑛)) |
4 | 3 | oveq1d 7290 |
. . 3
⊢ (𝑥 = 0 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2)) |
5 | 1, 4 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 0 →
((FermatNo‘(𝑥 + 1)) =
(∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(0
+ 1)) = (∏𝑛 ∈
(0...0)(FermatNo‘𝑛) +
2))) |
6 | | fvoveq1 7298 |
. . 3
⊢ (𝑥 = 𝑦 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑦 + 1))) |
7 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = 𝑦 → (0...𝑥) = (0...𝑦)) |
8 | 7 | prodeq1d 15631 |
. . . 4
⊢ (𝑥 = 𝑦 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) |
9 | 8 | oveq1d 7290 |
. . 3
⊢ (𝑥 = 𝑦 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) |
10 | 6, 9 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝑦 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2))) |
11 | | fvoveq1 7298 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (FermatNo‘(𝑥 + 1)) = (FermatNo‘((𝑦 + 1) + 1))) |
12 | | oveq2 7283 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (0...𝑥) = (0...(𝑦 + 1))) |
13 | 12 | prodeq1d 15631 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛)) |
14 | 13 | oveq1d 7290 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)) |
15 | 11, 14 | eqeq12d 2754 |
. 2
⊢ (𝑥 = (𝑦 + 1) → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))) |
16 | | fvoveq1 7298 |
. . 3
⊢ (𝑥 = 𝑁 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑁 + 1))) |
17 | | oveq2 7283 |
. . . 4
⊢ (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁)) |
18 | | prodeq1 15619 |
. . . . 5
⊢
((0...𝑥) =
(0...𝑁) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛)) |
19 | 18 | oveq1d 7290 |
. . . 4
⊢
((0...𝑥) =
(0...𝑁) →
(∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)) |
20 | 17, 19 | syl 17 |
. . 3
⊢ (𝑥 = 𝑁 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)) |
21 | 16, 20 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝑁 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))) |
22 | | fmtno0 44992 |
. . . . 5
⊢
(FermatNo‘0) = 3 |
23 | 22 | oveq1i 7285 |
. . . 4
⊢
((FermatNo‘0) + 2) = (3 + 2) |
24 | | 3p2e5 12124 |
. . . 4
⊢ (3 + 2) =
5 |
25 | 23, 24 | eqtri 2766 |
. . 3
⊢
((FermatNo‘0) + 2) = 5 |
26 | | fz0sn 13356 |
. . . . . 6
⊢ (0...0) =
{0} |
27 | 26 | prodeq1i 15628 |
. . . . 5
⊢
∏𝑛 ∈
(0...0)(FermatNo‘𝑛) =
∏𝑛 ∈ {0}
(FermatNo‘𝑛) |
28 | | 0z 12330 |
. . . . . 6
⊢ 0 ∈
ℤ |
29 | | 0nn0 12248 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
30 | | fmtnonn 44983 |
. . . . . . . 8
⊢ (0 ∈
ℕ0 → (FermatNo‘0) ∈ ℕ) |
31 | 30 | nncnd 11989 |
. . . . . . 7
⊢ (0 ∈
ℕ0 → (FermatNo‘0) ∈ ℂ) |
32 | 29, 31 | ax-mp 5 |
. . . . . 6
⊢
(FermatNo‘0) ∈ ℂ |
33 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑛 = 0 →
(FermatNo‘𝑛) =
(FermatNo‘0)) |
34 | 33 | prodsn 15672 |
. . . . . 6
⊢ ((0
∈ ℤ ∧ (FermatNo‘0) ∈ ℂ) → ∏𝑛 ∈ {0}
(FermatNo‘𝑛) =
(FermatNo‘0)) |
35 | 28, 32, 34 | mp2an 689 |
. . . . 5
⊢
∏𝑛 ∈ {0}
(FermatNo‘𝑛) =
(FermatNo‘0) |
36 | 27, 35 | eqtri 2766 |
. . . 4
⊢
∏𝑛 ∈
(0...0)(FermatNo‘𝑛) =
(FermatNo‘0) |
37 | 36 | oveq1i 7285 |
. . 3
⊢
(∏𝑛 ∈
(0...0)(FermatNo‘𝑛) +
2) = ((FermatNo‘0) + 2) |
38 | | 0p1e1 12095 |
. . . . 5
⊢ (0 + 1) =
1 |
39 | 38 | fveq2i 6777 |
. . . 4
⊢
(FermatNo‘(0 + 1)) = (FermatNo‘1) |
40 | | fmtno1 44993 |
. . . 4
⊢
(FermatNo‘1) = 5 |
41 | 39, 40 | eqtri 2766 |
. . 3
⊢
(FermatNo‘(0 + 1)) = 5 |
42 | 25, 37, 41 | 3eqtr4ri 2777 |
. 2
⊢
(FermatNo‘(0 + 1)) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2) |
43 | | fmtnorec2lem 44994 |
. 2
⊢ (𝑦 ∈ ℕ0
→ ((FermatNo‘(𝑦
+ 1)) = (∏𝑛 ∈
(0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))) |
44 | 5, 10, 15, 21, 42, 43 | nn0ind 12415 |
1
⊢ (𝑁 ∈ ℕ0
→ (FermatNo‘(𝑁 +
1)) = (∏𝑛 ∈
(0...𝑁)(FermatNo‘𝑛) + 2)) |