Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2 Structured version   Visualization version   GIF version

Theorem fmtnorec2 47517
Description: The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7392 . . 3 (𝑥 = 0 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(0 + 1)))
2 oveq2 7377 . . . . 5 (𝑥 = 0 → (0...𝑥) = (0...0))
32prodeq1d 15862 . . . 4 (𝑥 = 0 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...0)(FermatNo‘𝑛))
43oveq1d 7384 . . 3 (𝑥 = 0 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2))
51, 4eqeq12d 2745 . 2 (𝑥 = 0 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(0 + 1)) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2)))
6 fvoveq1 7392 . . 3 (𝑥 = 𝑦 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑦 + 1)))
7 oveq2 7377 . . . . 5 (𝑥 = 𝑦 → (0...𝑥) = (0...𝑦))
87prodeq1d 15862 . . . 4 (𝑥 = 𝑦 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛))
98oveq1d 7384 . . 3 (𝑥 = 𝑦 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2))
106, 9eqeq12d 2745 . 2 (𝑥 = 𝑦 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)))
11 fvoveq1 7392 . . 3 (𝑥 = (𝑦 + 1) → (FermatNo‘(𝑥 + 1)) = (FermatNo‘((𝑦 + 1) + 1)))
12 oveq2 7377 . . . . 5 (𝑥 = (𝑦 + 1) → (0...𝑥) = (0...(𝑦 + 1)))
1312prodeq1d 15862 . . . 4 (𝑥 = (𝑦 + 1) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
1413oveq1d 7384 . . 3 (𝑥 = (𝑦 + 1) → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
1511, 14eqeq12d 2745 . 2 (𝑥 = (𝑦 + 1) → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
16 fvoveq1 7392 . . 3 (𝑥 = 𝑁 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑁 + 1)))
17 oveq2 7377 . . . 4 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
18 prodeq1 15849 . . . . 5 ((0...𝑥) = (0...𝑁) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛))
1918oveq1d 7384 . . . 4 ((0...𝑥) = (0...𝑁) → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
2017, 19syl 17 . . 3 (𝑥 = 𝑁 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
2116, 20eqeq12d 2745 . 2 (𝑥 = 𝑁 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)))
22 fmtno0 47514 . . . . 5 (FermatNo‘0) = 3
2322oveq1i 7379 . . . 4 ((FermatNo‘0) + 2) = (3 + 2)
24 3p2e5 12308 . . . 4 (3 + 2) = 5
2523, 24eqtri 2752 . . 3 ((FermatNo‘0) + 2) = 5
26 fz0sn 13564 . . . . . 6 (0...0) = {0}
2726prodeq1i 15858 . . . . 5 𝑛 ∈ (0...0)(FermatNo‘𝑛) = ∏𝑛 ∈ {0} (FermatNo‘𝑛)
28 0z 12516 . . . . . 6 0 ∈ ℤ
29 0nn0 12433 . . . . . . 7 0 ∈ ℕ0
30 fmtnonn 47505 . . . . . . . 8 (0 ∈ ℕ0 → (FermatNo‘0) ∈ ℕ)
3130nncnd 12178 . . . . . . 7 (0 ∈ ℕ0 → (FermatNo‘0) ∈ ℂ)
3229, 31ax-mp 5 . . . . . 6 (FermatNo‘0) ∈ ℂ
33 fveq2 6840 . . . . . . 7 (𝑛 = 0 → (FermatNo‘𝑛) = (FermatNo‘0))
3433prodsn 15904 . . . . . 6 ((0 ∈ ℤ ∧ (FermatNo‘0) ∈ ℂ) → ∏𝑛 ∈ {0} (FermatNo‘𝑛) = (FermatNo‘0))
3528, 32, 34mp2an 692 . . . . 5 𝑛 ∈ {0} (FermatNo‘𝑛) = (FermatNo‘0)
3627, 35eqtri 2752 . . . 4 𝑛 ∈ (0...0)(FermatNo‘𝑛) = (FermatNo‘0)
3736oveq1i 7379 . . 3 (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2) = ((FermatNo‘0) + 2)
38 0p1e1 12279 . . . . 5 (0 + 1) = 1
3938fveq2i 6843 . . . 4 (FermatNo‘(0 + 1)) = (FermatNo‘1)
40 fmtno1 47515 . . . 4 (FermatNo‘1) = 5
4139, 40eqtri 2752 . . 3 (FermatNo‘(0 + 1)) = 5
4225, 37, 413eqtr4ri 2763 . 2 (FermatNo‘(0 + 1)) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2)
43 fmtnorec2lem 47516 . 2 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
445, 10, 15, 21, 42, 43nn0ind 12605 1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4585  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047  2c2 12217  3c3 12218  5c5 12220  0cn0 12418  cz 12505  ...cfz 13444  cprod 15845  FermatNocfmtno 47501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-fmtno 47502
This theorem is referenced by:  fmtnodvds  47518  fmtnorec3  47522
  Copyright terms: Public domain W3C validator