Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2 Structured version   Visualization version   GIF version

Theorem fmtnorec2 47557
Description: The second recurrence relation for Fermat numbers, see ProofWiki "Product of Sequence of Fermat Numbers plus 2", 29-Jul-2021, https://proofwiki.org/wiki/Product_of_Sequence_of_Fermat_Numbers_plus_2 or Wikipedia "Fermat number", 29-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
Distinct variable group:   𝑛,𝑁

Proof of Theorem fmtnorec2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvoveq1 7428 . . 3 (𝑥 = 0 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(0 + 1)))
2 oveq2 7413 . . . . 5 (𝑥 = 0 → (0...𝑥) = (0...0))
32prodeq1d 15936 . . . 4 (𝑥 = 0 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...0)(FermatNo‘𝑛))
43oveq1d 7420 . . 3 (𝑥 = 0 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2))
51, 4eqeq12d 2751 . 2 (𝑥 = 0 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(0 + 1)) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2)))
6 fvoveq1 7428 . . 3 (𝑥 = 𝑦 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑦 + 1)))
7 oveq2 7413 . . . . 5 (𝑥 = 𝑦 → (0...𝑥) = (0...𝑦))
87prodeq1d 15936 . . . 4 (𝑥 = 𝑦 → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛))
98oveq1d 7420 . . 3 (𝑥 = 𝑦 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2))
106, 9eqeq12d 2751 . 2 (𝑥 = 𝑦 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)))
11 fvoveq1 7428 . . 3 (𝑥 = (𝑦 + 1) → (FermatNo‘(𝑥 + 1)) = (FermatNo‘((𝑦 + 1) + 1)))
12 oveq2 7413 . . . . 5 (𝑥 = (𝑦 + 1) → (0...𝑥) = (0...(𝑦 + 1)))
1312prodeq1d 15936 . . . 4 (𝑥 = (𝑦 + 1) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
1413oveq1d 7420 . . 3 (𝑥 = (𝑦 + 1) → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
1511, 14eqeq12d 2751 . 2 (𝑥 = (𝑦 + 1) → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
16 fvoveq1 7428 . . 3 (𝑥 = 𝑁 → (FermatNo‘(𝑥 + 1)) = (FermatNo‘(𝑁 + 1)))
17 oveq2 7413 . . . 4 (𝑥 = 𝑁 → (0...𝑥) = (0...𝑁))
18 prodeq1 15923 . . . . 5 ((0...𝑥) = (0...𝑁) → ∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) = ∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛))
1918oveq1d 7420 . . . 4 ((0...𝑥) = (0...𝑁) → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
2017, 19syl 17 . . 3 (𝑥 = 𝑁 → (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
2116, 20eqeq12d 2751 . 2 (𝑥 = 𝑁 → ((FermatNo‘(𝑥 + 1)) = (∏𝑛 ∈ (0...𝑥)(FermatNo‘𝑛) + 2) ↔ (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2)))
22 fmtno0 47554 . . . . 5 (FermatNo‘0) = 3
2322oveq1i 7415 . . . 4 ((FermatNo‘0) + 2) = (3 + 2)
24 3p2e5 12391 . . . 4 (3 + 2) = 5
2523, 24eqtri 2758 . . 3 ((FermatNo‘0) + 2) = 5
26 fz0sn 13644 . . . . . 6 (0...0) = {0}
2726prodeq1i 15932 . . . . 5 𝑛 ∈ (0...0)(FermatNo‘𝑛) = ∏𝑛 ∈ {0} (FermatNo‘𝑛)
28 0z 12599 . . . . . 6 0 ∈ ℤ
29 0nn0 12516 . . . . . . 7 0 ∈ ℕ0
30 fmtnonn 47545 . . . . . . . 8 (0 ∈ ℕ0 → (FermatNo‘0) ∈ ℕ)
3130nncnd 12256 . . . . . . 7 (0 ∈ ℕ0 → (FermatNo‘0) ∈ ℂ)
3229, 31ax-mp 5 . . . . . 6 (FermatNo‘0) ∈ ℂ
33 fveq2 6876 . . . . . . 7 (𝑛 = 0 → (FermatNo‘𝑛) = (FermatNo‘0))
3433prodsn 15978 . . . . . 6 ((0 ∈ ℤ ∧ (FermatNo‘0) ∈ ℂ) → ∏𝑛 ∈ {0} (FermatNo‘𝑛) = (FermatNo‘0))
3528, 32, 34mp2an 692 . . . . 5 𝑛 ∈ {0} (FermatNo‘𝑛) = (FermatNo‘0)
3627, 35eqtri 2758 . . . 4 𝑛 ∈ (0...0)(FermatNo‘𝑛) = (FermatNo‘0)
3736oveq1i 7415 . . 3 (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2) = ((FermatNo‘0) + 2)
38 0p1e1 12362 . . . . 5 (0 + 1) = 1
3938fveq2i 6879 . . . 4 (FermatNo‘(0 + 1)) = (FermatNo‘1)
40 fmtno1 47555 . . . 4 (FermatNo‘1) = 5
4139, 40eqtri 2758 . . 3 (FermatNo‘(0 + 1)) = 5
4225, 37, 413eqtr4ri 2769 . 2 (FermatNo‘(0 + 1)) = (∏𝑛 ∈ (0...0)(FermatNo‘𝑛) + 2)
43 fmtnorec2lem 47556 . 2 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
445, 10, 15, 21, 42, 43nn0ind 12688 1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = (∏𝑛 ∈ (0...𝑁)(FermatNo‘𝑛) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {csn 4601  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132  2c2 12295  3c3 12296  5c5 12298  0cn0 12501  cz 12588  ...cfz 13524  cprod 15919  FermatNocfmtno 47541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920  df-fmtno 47542
This theorem is referenced by:  fmtnodvds  47558  fmtnorec3  47562
  Copyright terms: Public domain W3C validator