| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvprodi | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| cbvprodi.1 | ⊢ Ⅎ𝑘𝐵 |
| cbvprodi.2 | ⊢ Ⅎ𝑗𝐶 |
| cbvprodi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvprodi | ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvprodi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2894 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | cbvprodi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | cbvprodi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvprod 15815 | 1 ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2879 ∏cprod 15805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13904 df-prod 15806 |
| This theorem is referenced by: prodfc 15847 fprodcllemf 15860 prodsn 15864 prodsnf 15866 fprodm1s 15872 fprodp1s 15873 prodsns 15874 fprod2dlem 15882 fprodcom2 15886 fproddivf 15889 fprodsplitf 15890 |
| Copyright terms: Public domain | W3C validator |