| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvprodi | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| cbvprodi.1 | ⊢ Ⅎ𝑘𝐵 |
| cbvprodi.2 | ⊢ Ⅎ𝑗𝐶 |
| cbvprodi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvprodi | ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvprodi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑘𝐴 | |
| 3 | nfcv 2891 | . 2 ⊢ Ⅎ𝑗𝐴 | |
| 4 | cbvprodi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
| 5 | cbvprodi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
| 6 | 1, 2, 3, 4, 5 | cbvprod 15839 | 1 ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2876 ∏cprod 15829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-iota 6442 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seq 13928 df-prod 15830 |
| This theorem is referenced by: prodfc 15871 fprodcllemf 15884 prodsn 15888 prodsnf 15890 fprodm1s 15896 fprodp1s 15897 prodsns 15898 fprod2dlem 15906 fprodcom2 15910 fproddivf 15913 fprodsplitf 15914 |
| Copyright terms: Public domain | W3C validator |