MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvprodi Structured version   Visualization version   GIF version

Theorem cbvprodi 15676
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
cbvprodi.1 𝑘𝐵
cbvprodi.2 𝑗𝐶
cbvprodi.3 (𝑗 = 𝑘𝐵 = 𝐶)
Assertion
Ref Expression
cbvprodi 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Distinct variable group:   𝑗,𝑘,𝐴
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝐶(𝑗,𝑘)

Proof of Theorem cbvprodi
StepHypRef Expression
1 cbvprodi.3 . 2 (𝑗 = 𝑘𝐵 = 𝐶)
2 nfcv 2905 . 2 𝑘𝐴
3 nfcv 2905 . 2 𝑗𝐴
4 cbvprodi.1 . 2 𝑘𝐵
5 cbvprodi.2 . 2 𝑗𝐶
61, 2, 3, 4, 5cbvprod 15674 1 𝑗𝐴 𝐵 = ∏𝑘𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnfc 2885  cprod 15664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-xp 5606  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-iota 6410  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-seq 13772  df-prod 15665
This theorem is referenced by:  prodfc  15704  fprodcllemf  15717  prodsn  15721  prodsnf  15723  fprodm1s  15729  fprodp1s  15730  prodsns  15731  fprod2dlem  15739  fprodcom2  15743  fproddivf  15746  fprodsplitf  15747
  Copyright terms: Public domain W3C validator