![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvprodi | Structured version Visualization version GIF version |
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
cbvprodi.1 | ⊢ Ⅎ𝑘𝐵 |
cbvprodi.2 | ⊢ Ⅎ𝑗𝐶 |
cbvprodi.3 | ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvprodi | ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvprodi.3 | . 2 ⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | nfcv 2908 | . 2 ⊢ Ⅎ𝑗𝐴 | |
4 | cbvprodi.1 | . 2 ⊢ Ⅎ𝑘𝐵 | |
5 | cbvprodi.2 | . 2 ⊢ Ⅎ𝑗𝐶 | |
6 | 1, 2, 3, 4, 5 | cbvprod 15961 | 1 ⊢ ∏𝑗 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Ⅎwnfc 2893 ∏cprod 15951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-prod 15952 |
This theorem is referenced by: prodfc 15993 fprodcllemf 16006 prodsn 16010 prodsnf 16012 fprodm1s 16018 fprodp1s 16019 prodsns 16020 fprod2dlem 16028 fprodcom2 16032 fproddivf 16035 fprodsplitf 16036 |
Copyright terms: Public domain | W3C validator |