MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacfwd Structured version   Visualization version   GIF version

Theorem fallfacfwd 16052
Description: The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018.)
Assertion
Ref Expression
fallfacfwd ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))

Proof of Theorem fallfacfwd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2cn 11407 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
2 nnnn0 12508 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fallfacval 16025 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
41, 2, 3syl2an 596 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
5 0p1e1 12362 . . . . . . . . 9 (0 + 1) = 1
65oveq1i 7415 . . . . . . . 8 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
76prodeq1i 15932 . . . . . . 7 𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))
87oveq2i 7416 . . . . . 6 ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
9 nnm1nn0 12542 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
109adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
11 nn0uz 12894 . . . . . . . 8 0 = (ℤ‘0)
1210, 11eleqtrdi 2844 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ (ℤ‘0))
13 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
14 elfzelz 13541 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ)
1514adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℤ)
16 peano2zm 12635 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℤ)
1817zcnd 12698 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℂ)
1913, 18subcld 11594 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) ∈ ℂ)
20 oveq1 7412 . . . . . . . . 9 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
21 df-neg 11469 . . . . . . . . 9 -1 = (0 − 1)
2220, 21eqtr4di 2788 . . . . . . . 8 (𝑘 = 0 → (𝑘 − 1) = -1)
2322oveq2d 7421 . . . . . . 7 (𝑘 = 0 → (𝐴 − (𝑘 − 1)) = (𝐴 − -1))
2412, 19, 23fprod1p 15984 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
25 fallfacval2 16027 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
269, 25sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
2726oveq2d 7421 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
288, 24, 273eqtr4a 2796 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))))
29 elfznn0 13637 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
3029adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
3130nn0cnd 12564 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ)
32 1cnd 11230 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ∈ ℂ)
3313, 31, 32subsub3d 11624 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) = ((𝐴 + 1) − 𝑘))
3433prodeq2dv 15938 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
35 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
36 1cnd 11230 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3735, 36subnegd 11601 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − -1) = (𝐴 + 1))
3837oveq1d 7420 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
3928, 34, 383eqtr3d 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
404, 39eqtrd 2770 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
41 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
4241nncnd 12256 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4342, 36npcand 11598 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
4443oveq2d 7421 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = (𝐴 FallFac 𝑁))
45 fallfacp1 16046 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
469, 45sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4744, 46eqtr3d 2772 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac 𝑁) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4840, 47oveq12d 7423 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))))
49 fallfaccl 16032 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
509, 49sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
5110nn0cnd 12564 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
5235, 51subcld 11594 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − (𝑁 − 1)) ∈ ℂ)
5350, 52mulcomd 11256 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))) = ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1))))
5453oveq2d 7421 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
551adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈ ℂ)
5655, 52, 50subdird 11694 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
5735, 36, 51pnncand 11633 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = (1 + (𝑁 − 1)))
5836, 42pncan3d 11597 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 + (𝑁 − 1)) = 𝑁)
5957, 58eqtrd 2770 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = 𝑁)
6059oveq1d 7420 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6154, 56, 603eqtr2d 2776 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6248, 61eqtrd 2770 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467  cn 12240  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cprod 15919   FallFac cfallfac 16020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920  df-fallfac 16023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator