MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacfwd Structured version   Visualization version   GIF version

Theorem fallfacfwd 15674
Description: The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018.)
Assertion
Ref Expression
fallfacfwd ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))

Proof of Theorem fallfacfwd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2cn 11077 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
2 nnnn0 12170 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fallfacval 15647 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
41, 2, 3syl2an 595 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
5 0p1e1 12025 . . . . . . . . 9 (0 + 1) = 1
65oveq1i 7265 . . . . . . . 8 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
76prodeq1i 15556 . . . . . . 7 𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))
87oveq2i 7266 . . . . . 6 ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
9 nnm1nn0 12204 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
109adantl 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
11 nn0uz 12549 . . . . . . . 8 0 = (ℤ‘0)
1210, 11eleqtrdi 2849 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ (ℤ‘0))
13 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
14 elfzelz 13185 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ)
1514adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℤ)
16 peano2zm 12293 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℤ)
1817zcnd 12356 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℂ)
1913, 18subcld 11262 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) ∈ ℂ)
20 oveq1 7262 . . . . . . . . 9 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
21 df-neg 11138 . . . . . . . . 9 -1 = (0 − 1)
2220, 21eqtr4di 2797 . . . . . . . 8 (𝑘 = 0 → (𝑘 − 1) = -1)
2322oveq2d 7271 . . . . . . 7 (𝑘 = 0 → (𝐴 − (𝑘 − 1)) = (𝐴 − -1))
2412, 19, 23fprod1p 15606 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
25 fallfacval2 15649 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
269, 25sylan2 592 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
2726oveq2d 7271 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
288, 24, 273eqtr4a 2805 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))))
29 elfznn0 13278 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
3029adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
3130nn0cnd 12225 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ)
32 1cnd 10901 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ∈ ℂ)
3313, 31, 32subsub3d 11292 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) = ((𝐴 + 1) − 𝑘))
3433prodeq2dv 15561 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
35 simpl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
36 1cnd 10901 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3735, 36subnegd 11269 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − -1) = (𝐴 + 1))
3837oveq1d 7270 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
3928, 34, 383eqtr3d 2786 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
404, 39eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
41 simpr 484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
4241nncnd 11919 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4342, 36npcand 11266 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
4443oveq2d 7271 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = (𝐴 FallFac 𝑁))
45 fallfacp1 15668 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
469, 45sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4744, 46eqtr3d 2780 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac 𝑁) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4840, 47oveq12d 7273 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))))
49 fallfaccl 15654 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
509, 49sylan2 592 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
5110nn0cnd 12225 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
5235, 51subcld 11262 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − (𝑁 − 1)) ∈ ℂ)
5350, 52mulcomd 10927 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))) = ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1))))
5453oveq2d 7271 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
551adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈ ℂ)
5655, 52, 50subdird 11362 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
5735, 36, 51pnncand 11301 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = (1 + (𝑁 − 1)))
5836, 42pncan3d 11265 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 + (𝑁 − 1)) = 𝑁)
5957, 58eqtrd 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = 𝑁)
6059oveq1d 7270 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6154, 56, 603eqtr2d 2784 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6248, 61eqtrd 2778 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  cn 11903  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cprod 15543   FallFac cfallfac 15642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544  df-fallfac 15645
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator