MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallfacfwd Structured version   Visualization version   GIF version

Theorem fallfacfwd 15746
Description: The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018.)
Assertion
Ref Expression
fallfacfwd ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))

Proof of Theorem fallfacfwd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2cn 11147 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
2 nnnn0 12240 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 fallfacval 15719 . . . . 5 (((𝐴 + 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
41, 2, 3syl2an 596 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
5 0p1e1 12095 . . . . . . . . 9 (0 + 1) = 1
65oveq1i 7285 . . . . . . . 8 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
76prodeq1i 15628 . . . . . . 7 𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))
87oveq2i 7286 . . . . . 6 ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
9 nnm1nn0 12274 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
109adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℕ0)
11 nn0uz 12620 . . . . . . . 8 0 = (ℤ‘0)
1210, 11eleqtrdi 2849 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ (ℤ‘0))
13 simpll 764 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝐴 ∈ ℂ)
14 elfzelz 13256 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ)
1514adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℤ)
16 peano2zm 12363 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℤ)
1817zcnd 12427 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 − 1) ∈ ℂ)
1913, 18subcld 11332 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) ∈ ℂ)
20 oveq1 7282 . . . . . . . . 9 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
21 df-neg 11208 . . . . . . . . 9 -1 = (0 − 1)
2220, 21eqtr4di 2796 . . . . . . . 8 (𝑘 = 0 → (𝑘 − 1) = -1)
2322oveq2d 7291 . . . . . . 7 (𝑘 = 0 → (𝐴 − (𝑘 − 1)) = (𝐴 − -1))
2412, 19, 23fprod1p 15678 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · ∏𝑘 ∈ ((0 + 1)...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
25 fallfacval2 15721 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
269, 25sylan2 593 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1)))
2726oveq2d 7291 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 − -1) · ∏𝑘 ∈ (1...(𝑁 − 1))(𝐴 − (𝑘 − 1))))
288, 24, 273eqtr4a 2804 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))))
29 elfznn0 13349 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
3029adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
3130nn0cnd 12295 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ)
32 1cnd 10970 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 1 ∈ ℂ)
3313, 31, 32subsub3d 11362 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → (𝐴 − (𝑘 − 1)) = ((𝐴 + 1) − 𝑘))
3433prodeq2dv 15633 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 − (𝑘 − 1)) = ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘))
35 simpl 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
36 1cnd 10970 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
3735, 36subnegd 11339 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − -1) = (𝐴 + 1))
3837oveq1d 7290 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 − -1) · (𝐴 FallFac (𝑁 − 1))) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
3928, 34, 383eqtr3d 2786 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ∏𝑘 ∈ (0...(𝑁 − 1))((𝐴 + 1) − 𝑘) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
404, 39eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) FallFac 𝑁) = ((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))))
41 simpr 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
4241nncnd 11989 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4342, 36npcand 11336 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
4443oveq2d 7291 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = (𝐴 FallFac 𝑁))
45 fallfacp1 15740 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
469, 45sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac ((𝑁 − 1) + 1)) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4744, 46eqtr3d 2780 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac 𝑁) = ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))))
4840, 47oveq12d 7293 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))))
49 fallfaccl 15726 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
509, 49sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 FallFac (𝑁 − 1)) ∈ ℂ)
5110nn0cnd 12295 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) ∈ ℂ)
5235, 51subcld 11332 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 − (𝑁 − 1)) ∈ ℂ)
5350, 52mulcomd 10996 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1))) = ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1))))
5453oveq2d 7291 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
551adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈ ℂ)
5655, 52, 50subdird 11432 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 − (𝑁 − 1)) · (𝐴 FallFac (𝑁 − 1)))))
5735, 36, 51pnncand 11371 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = (1 + (𝑁 − 1)))
5836, 42pncan3d 11335 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (1 + (𝑁 − 1)) = 𝑁)
5957, 58eqtrd 2778 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) − (𝐴 − (𝑁 − 1))) = 𝑁)
6059oveq1d 7290 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) − (𝐴 − (𝑁 − 1))) · (𝐴 FallFac (𝑁 − 1))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6154, 56, 603eqtr2d 2784 . 2 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) · (𝐴 FallFac (𝑁 − 1))) − ((𝐴 FallFac (𝑁 − 1)) · (𝐴 − (𝑁 − 1)))) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
6248, 61eqtrd 2778 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) FallFac 𝑁) − (𝐴 FallFac 𝑁)) = (𝑁 · (𝐴 FallFac (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cprod 15615   FallFac cfallfac 15714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-fallfac 15717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator