Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvopnbgr2 Structured version   Visualization version   GIF version

Theorem dfvopnbgr2 47456
Description: Alternate definition of the semiopen neighborhood of a vertex breaking up the subset relationship of an unordered pair. A semiopen neighborhood 𝑈 of a vertex 𝑁 is its open neighborhood together with itself if there is a loop at this vertex. (Contributed by AV, 15-May-2025.)
Hypotheses
Ref Expression
dfvopnbgr2.v 𝑉 = (Vtx‘𝐺)
dfvopnbgr2.e 𝐸 = (Edg‘𝐺)
dfvopnbgr2.u 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
Assertion
Ref Expression
dfvopnbgr2 (𝑁𝑉𝑈 = {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁,𝑛   𝑒,𝑉,𝑛
Allowed substitution hints:   𝑈(𝑒,𝑛)   𝐸(𝑛)   𝐺(𝑛)

Proof of Theorem dfvopnbgr2
StepHypRef Expression
1 dfvopnbgr2.u . 2 𝑈 = {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))}
2 dfvopnbgr2.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
3 dfvopnbgr2.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
42, 3nbgrel 29273 . . . . . . 7 (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
54a1i 11 . . . . . 6 ((𝑁𝑉𝑛𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)))
65orbi1d 914 . . . . 5 ((𝑁𝑉𝑛𝑉) → ((𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})) ↔ (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))))
7 df-3an 1086 . . . . . . . . 9 (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
8 r19.42v 3181 . . . . . . . . 9 (∃𝑒𝐸 (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
97, 8bitr4i 277 . . . . . . . 8 (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒) ↔ ∃𝑒𝐸 (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒))
109orbi1i 911 . . . . . . 7 ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})) ↔ (∃𝑒𝐸 (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})))
1110a1i 11 . . . . . 6 ((𝑁𝑉𝑛𝑉) → ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})) ↔ (∃𝑒𝐸 (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))))
12 r19.43 3112 . . . . . 6 (∃𝑒𝐸 ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛𝑒 = {𝑁})) ↔ (∃𝑒𝐸 (((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})))
1311, 12bitr4di 288 . . . . 5 ((𝑁𝑉𝑛𝑉) → ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁 ∧ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})) ↔ ∃𝑒𝐸 ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛𝑒 = {𝑁}))))
146, 13bitrd 278 . . . 4 ((𝑁𝑉𝑛𝑉) → ((𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})) ↔ ∃𝑒𝐸 ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛𝑒 = {𝑁}))))
15 anass 467 . . . . . . . 8 ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛𝑉𝑁𝑉) ∧ (𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒)))
1615a1i 11 . . . . . . 7 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛𝑉𝑁𝑉) ∧ (𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒))))
17 ibar 527 . . . . . . . . 9 ((𝑛𝑉𝑁𝑉) → ((𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛𝑉𝑁𝑉) ∧ (𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒))))
1817ancoms 457 . . . . . . . 8 ((𝑁𝑉𝑛𝑉) → ((𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛𝑉𝑁𝑉) ∧ (𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒))))
1918adantr 479 . . . . . . 7 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → ((𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛𝑉𝑁𝑉) ∧ (𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒))))
20 prssg 4818 . . . . . . . . . . 11 ((𝑁𝑉𝑛𝑉) → ((𝑁𝑒𝑛𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒))
2120bicomd 222 . . . . . . . . . 10 ((𝑁𝑉𝑛𝑉) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁𝑒𝑛𝑒)))
2221adantr 479 . . . . . . . . 9 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁𝑒𝑛𝑒)))
2322anbi2d 628 . . . . . . . 8 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → ((𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (𝑛𝑁 ∧ (𝑁𝑒𝑛𝑒))))
24 3anass 1092 . . . . . . . 8 ((𝑛𝑁𝑁𝑒𝑛𝑒) ↔ (𝑛𝑁 ∧ (𝑁𝑒𝑛𝑒)))
2523, 24bitr4di 288 . . . . . . 7 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → ((𝑛𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (𝑛𝑁𝑁𝑒𝑛𝑒)))
2616, 19, 253bitr2d 306 . . . . . 6 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (𝑛𝑁𝑁𝑒𝑛𝑒)))
27 eqcom 2733 . . . . . . . . 9 (𝑁 = 𝑛𝑛 = 𝑁)
2827anbi1i 622 . . . . . . . 8 ((𝑁 = 𝑛𝑒 = {𝑁}) ↔ (𝑛 = 𝑁𝑒 = {𝑁}))
29 sneq 4633 . . . . . . . . . . 11 (𝑁 = 𝑛 → {𝑁} = {𝑛})
3029eqcoms 2734 . . . . . . . . . 10 (𝑛 = 𝑁 → {𝑁} = {𝑛})
3130eqeq2d 2737 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑒 = {𝑁} ↔ 𝑒 = {𝑛}))
3231pm5.32i 573 . . . . . . . 8 ((𝑛 = 𝑁𝑒 = {𝑁}) ↔ (𝑛 = 𝑁𝑒 = {𝑛}))
3328, 32bitri 274 . . . . . . 7 ((𝑁 = 𝑛𝑒 = {𝑁}) ↔ (𝑛 = 𝑁𝑒 = {𝑛}))
3433a1i 11 . . . . . 6 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → ((𝑁 = 𝑛𝑒 = {𝑁}) ↔ (𝑛 = 𝑁𝑒 = {𝑛})))
3526, 34orbi12d 916 . . . . 5 (((𝑁𝑉𝑛𝑉) ∧ 𝑒𝐸) → (((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛𝑒 = {𝑁})) ↔ ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))))
3635rexbidva 3167 . . . 4 ((𝑁𝑉𝑛𝑉) → (∃𝑒𝐸 ((((𝑛𝑉𝑁𝑉) ∧ 𝑛𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛𝑒 = {𝑁})) ↔ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))))
3714, 36bitrd 278 . . 3 ((𝑁𝑉𝑛𝑉) → ((𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁})) ↔ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))))
3837rabbidva 3426 . 2 (𝑁𝑉 → {𝑛𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒𝐸 (𝑁 = 𝑛𝑒 = {𝑁}))} = {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})
391, 38eqtrid 2778 1 (𝑁𝑉𝑈 = {𝑛𝑉 ∣ ∃𝑒𝐸 ((𝑛𝑁𝑁𝑒𝑛𝑒) ∨ (𝑛 = 𝑁𝑒 = {𝑛}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  {crab 3419  wss 3946  {csn 4623  {cpr 4625  cfv 6546  (class class class)co 7416  Vtxcvtx 28929  Edgcedg 28980   NeighbVtx cnbgr 29265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-nbgr 29266
This theorem is referenced by:  vopnbgrel  47457  dfclnbgr6  47459  dfnbgr6  47460  dfsclnbgr6  47461
  Copyright terms: Public domain W3C validator