Proof of Theorem dfvopnbgr2
Step | Hyp | Ref
| Expression |
1 | | dfvopnbgr2.u |
. 2
⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} |
2 | | dfvopnbgr2.v |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
3 | | dfvopnbgr2.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
4 | 2, 3 | nbgrel 29375 |
. . . . . . 7
⊢ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒)) |
5 | 4 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒))) |
6 | 5 | orbi1d 915 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})))) |
7 | | df-3an 1089 |
. . . . . . . . 9
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒)) |
8 | | r19.42v 3197 |
. . . . . . . . 9
⊢
(∃𝑒 ∈
𝐸 (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒)) |
9 | 7, 8 | bitr4i 278 |
. . . . . . . 8
⊢ (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) ↔ ∃𝑒 ∈ 𝐸 (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒)) |
10 | 9 | orbi1i 912 |
. . . . . . 7
⊢ ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ (∃𝑒 ∈ 𝐸 (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))) |
11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ (∃𝑒 ∈ 𝐸 (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})))) |
12 | | r19.43 3128 |
. . . . . 6
⊢
(∃𝑒 ∈
𝐸 ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ (∃𝑒 ∈ 𝐸 (((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))) |
13 | 11, 12 | bitr4di 289 |
. . . . 5
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ ∃𝑒 ∈ 𝐸 ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})))) |
14 | 6, 13 | bitrd 279 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ ∃𝑒 ∈ 𝐸 ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})))) |
15 | | anass 468 |
. . . . . . . 8
⊢ ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒))) |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒)))) |
17 | | ibar 528 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → ((𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒)))) |
18 | 17 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒)))) |
19 | 18 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → ((𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ ((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ (𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒)))) |
20 | | prssg 4844 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ {𝑁, 𝑛} ⊆ 𝑒)) |
21 | 20 | bicomd 223 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
22 | 21 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
23 | 22 | anbi2d 629 |
. . . . . . . 8
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → ((𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)))) |
24 | | 3anass 1095 |
. . . . . . . 8
⊢ ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ↔ (𝑛 ≠ 𝑁 ∧ (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
25 | 23, 24 | bitr4di 289 |
. . . . . . 7
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → ((𝑛 ≠ 𝑁 ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
26 | 16, 19, 25 | 3bitr2d 307 |
. . . . . 6
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ↔ (𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒))) |
27 | | eqcom 2747 |
. . . . . . . . 9
⊢ (𝑁 = 𝑛 ↔ 𝑛 = 𝑁) |
28 | 27 | anbi1i 623 |
. . . . . . . 8
⊢ ((𝑁 = 𝑛 ∧ 𝑒 = {𝑁}) ↔ (𝑛 = 𝑁 ∧ 𝑒 = {𝑁})) |
29 | | sneq 4658 |
. . . . . . . . . . 11
⊢ (𝑁 = 𝑛 → {𝑁} = {𝑛}) |
30 | 29 | eqcoms 2748 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑁 → {𝑁} = {𝑛}) |
31 | 30 | eqeq2d 2751 |
. . . . . . . . 9
⊢ (𝑛 = 𝑁 → (𝑒 = {𝑁} ↔ 𝑒 = {𝑛})) |
32 | 31 | pm5.32i 574 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑒 = {𝑁}) ↔ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) |
33 | 28, 32 | bitri 275 |
. . . . . . 7
⊢ ((𝑁 = 𝑛 ∧ 𝑒 = {𝑁}) ↔ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})) |
34 | 33 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → ((𝑁 = 𝑛 ∧ 𝑒 = {𝑁}) ↔ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))) |
35 | 26, 34 | orbi12d 917 |
. . . . 5
⊢ (((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) ∧ 𝑒 ∈ 𝐸) → (((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})))) |
36 | 35 | rexbidva 3183 |
. . . 4
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (∃𝑒 ∈ 𝐸 ((((𝑛 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ∧ 𝑛 ≠ 𝑁) ∧ {𝑁, 𝑛} ⊆ 𝑒) ∨ (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})))) |
37 | 14, 36 | bitrd 279 |
. . 3
⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁})) ↔ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛})))) |
38 | 37 | rabbidva 3450 |
. 2
⊢ (𝑁 ∈ 𝑉 → {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |
39 | 1, 38 | eqtrid 2792 |
1
⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) |