Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgredgprv | Structured version Visualization version GIF version |
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgredgprv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
umgredgprv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 27484 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
2 | umgredgprv.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrnloopv.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 2, 3 | uhgrss 27444 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
5 | 1, 4 | sylan 580 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
6 | 2, 3 | umgredg2 27480 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
7 | sseq1 3945 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ⊆ 𝑉 ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
8 | fveqeq2 6775 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) | |
9 | 7, 8 | anbi12d 631 | . . . 4 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) ↔ ({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2))) |
10 | eqid 2738 | . . . . . . 7 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
11 | 10 | hashprdifel 14123 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
12 | prssg 4752 | . . . . . . . 8 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
13 | 12 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) |
14 | 13 | biimprd 247 | . . . . . 6 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | 11, 14 | syl 17 | . . . . 5 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
16 | 15 | impcom 408 | . . . 4 ⊢ (({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
17 | 9, 16 | syl6bi 252 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
18 | 17 | com12 32 | . 2 ⊢ (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
19 | 5, 6, 18 | syl2anc 584 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3886 {cpr 4563 dom cdm 5584 ‘cfv 6426 2c2 12038 ♯chash 14054 Vtxcvtx 27376 iEdgciedg 27377 UHGraphcuhgr 27436 UMGraphcumgr 27461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-oadd 8288 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-n0 12244 df-z 12330 df-uz 12593 df-fz 13250 df-hash 14055 df-uhgr 27438 df-upgr 27462 df-umgr 27463 |
This theorem is referenced by: umgrnloop 27488 usgredgprv 27571 |
Copyright terms: Public domain | W3C validator |