![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgredgprv | Structured version Visualization version GIF version |
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgredgprv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
umgredgprv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 28872 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
2 | umgredgprv.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrnloopv.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 2, 3 | uhgrss 28832 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
5 | 1, 4 | sylan 579 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
6 | 2, 3 | umgredg2 28868 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
7 | sseq1 4002 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ⊆ 𝑉 ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
8 | fveqeq2 6894 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) | |
9 | 7, 8 | anbi12d 630 | . . . 4 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) ↔ ({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2))) |
10 | eqid 2726 | . . . . . . 7 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
11 | 10 | hashprdifel 14363 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
12 | prssg 4817 | . . . . . . . 8 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
13 | 12 | 3adant3 1129 | . . . . . . 7 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) |
14 | 13 | biimprd 247 | . . . . . 6 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | 11, 14 | syl 17 | . . . . 5 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
16 | 15 | impcom 407 | . . . 4 ⊢ (({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
17 | 9, 16 | biimtrdi 252 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
18 | 17 | com12 32 | . 2 ⊢ (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
19 | 5, 6, 18 | syl2anc 583 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ⊆ wss 3943 {cpr 4625 dom cdm 5669 ‘cfv 6537 2c2 12271 ♯chash 14295 Vtxcvtx 28764 iEdgciedg 28765 UHGraphcuhgr 28824 UMGraphcumgr 28849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 df-uhgr 28826 df-upgr 28850 df-umgr 28851 |
This theorem is referenced by: umgrnloop 28876 usgredgprv 28959 |
Copyright terms: Public domain | W3C validator |