![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgredgprv | Structured version Visualization version GIF version |
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgredgprv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
umgredgprv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 29139 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
2 | umgredgprv.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrnloopv.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 2, 3 | uhgrss 29099 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
5 | 1, 4 | sylan 579 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
6 | 2, 3 | umgredg2 29135 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
7 | sseq1 4034 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ⊆ 𝑉 ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
8 | fveqeq2 6929 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) | |
9 | 7, 8 | anbi12d 631 | . . . 4 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) ↔ ({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2))) |
10 | eqid 2740 | . . . . . . 7 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
11 | 10 | hashprdifel 14447 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
12 | prssg 4844 | . . . . . . . 8 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
13 | 12 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) |
14 | 13 | biimprd 248 | . . . . . 6 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | 11, 14 | syl 17 | . . . . 5 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
16 | 15 | impcom 407 | . . . 4 ⊢ (({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
17 | 9, 16 | biimtrdi 253 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
18 | 17 | com12 32 | . 2 ⊢ (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
19 | 5, 6, 18 | syl2anc 583 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 {cpr 4650 dom cdm 5700 ‘cfv 6573 2c2 12348 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 UHGraphcuhgr 29091 UMGraphcumgr 29116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-uhgr 29093 df-upgr 29117 df-umgr 29118 |
This theorem is referenced by: umgrnloop 29143 usgredgprv 29229 |
Copyright terms: Public domain | W3C validator |