Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgredgprv | Structured version Visualization version GIF version |
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸‘𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
umgredgprv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
umgredgprv | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 27377 | . . 3 ⊢ (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph) | |
2 | umgredgprv.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | umgrnloopv.e | . . . 4 ⊢ 𝐸 = (iEdg‘𝐺) | |
4 | 2, 3 | uhgrss 27337 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
5 | 1, 4 | sylan 579 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
6 | 2, 3 | umgredg2 27373 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
7 | sseq1 3942 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ⊆ 𝑉 ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
8 | fveqeq2 6765 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) | |
9 | 7, 8 | anbi12d 630 | . . . 4 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) ↔ ({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2))) |
10 | eqid 2738 | . . . . . . 7 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
11 | 10 | hashprdifel 14041 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
12 | prssg 4749 | . . . . . . . 8 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
13 | 12 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) |
14 | 13 | biimprd 247 | . . . . . 6 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | 11, 14 | syl 17 | . . . . 5 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
16 | 15 | impcom 407 | . . . 4 ⊢ (({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
17 | 9, 16 | syl6bi 252 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
18 | 17 | com12 32 | . 2 ⊢ (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
19 | 5, 6, 18 | syl2anc 583 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 {cpr 4560 dom cdm 5580 ‘cfv 6418 2c2 11958 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 UHGraphcuhgr 27329 UMGraphcumgr 27354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-uhgr 27331 df-upgr 27355 df-umgr 27356 |
This theorem is referenced by: umgrnloop 27381 usgredgprv 27464 |
Copyright terms: Public domain | W3C validator |