MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredgprv Structured version   Visualization version   GIF version

Theorem umgredgprv 29142
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
Hypotheses
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
umgredgprv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
umgredgprv ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑉𝑁𝑉)))

Proof of Theorem umgredgprv
StepHypRef Expression
1 umgruhgr 29139 . . 3 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
2 umgredgprv.v . . . 4 𝑉 = (Vtx‘𝐺)
3 umgrnloopv.e . . . 4 𝐸 = (iEdg‘𝐺)
42, 3uhgrss 29099 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ⊆ 𝑉)
51, 4sylan 579 . 2 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ⊆ 𝑉)
62, 3umgredg2 29135 . 2 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
7 sseq1 4034 . . . . 5 ((𝐸𝑋) = {𝑀, 𝑁} → ((𝐸𝑋) ⊆ 𝑉 ↔ {𝑀, 𝑁} ⊆ 𝑉))
8 fveqeq2 6929 . . . . 5 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2))
97, 8anbi12d 631 . . . 4 ((𝐸𝑋) = {𝑀, 𝑁} → (((𝐸𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸𝑋)) = 2) ↔ ({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2)))
10 eqid 2740 . . . . . . 7 {𝑀, 𝑁} = {𝑀, 𝑁}
1110hashprdifel 14447 . . . . . 6 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
12 prssg 4844 . . . . . . . 8 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀𝑉𝑁𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉))
13123adant3 1132 . . . . . . 7 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁) → ((𝑀𝑉𝑁𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉))
1413biimprd 248 . . . . . 6 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁) → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀𝑉𝑁𝑉)))
1511, 14syl 17 . . . . 5 ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀𝑉𝑁𝑉)))
1615impcom 407 . . . 4 (({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀𝑉𝑁𝑉))
179, 16biimtrdi 253 . . 3 ((𝐸𝑋) = {𝑀, 𝑁} → (((𝐸𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸𝑋)) = 2) → (𝑀𝑉𝑁𝑉)))
1817com12 32 . 2 (((𝐸𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸𝑋)) = 2) → ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑉𝑁𝑉)))
195, 6, 18syl2anc 583 1 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑉𝑁𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wss 3976  {cpr 4650  dom cdm 5700  cfv 6573  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091  UMGraphcumgr 29116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-uhgr 29093  df-upgr 29117  df-umgr 29118
This theorem is referenced by:  umgrnloop  29143  usgredgprv  29229
  Copyright terms: Public domain W3C validator