MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredgprv Structured version   Visualization version   GIF version

Theorem umgredgprv 26904
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either 𝑀 or 𝑁 could be proper classes ((𝐸𝑋) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
Hypotheses
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
umgredgprv.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
umgredgprv ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑉𝑁𝑉)))

Proof of Theorem umgredgprv
StepHypRef Expression
1 umgruhgr 26901 . . 3 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
2 umgredgprv.v . . . 4 𝑉 = (Vtx‘𝐺)
3 umgrnloopv.e . . . 4 𝐸 = (iEdg‘𝐺)
42, 3uhgrss 26861 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ⊆ 𝑉)
51, 4sylan 583 . 2 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸𝑋) ⊆ 𝑉)
62, 3umgredg2 26897 . 2 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸𝑋)) = 2)
7 sseq1 3943 . . . . 5 ((𝐸𝑋) = {𝑀, 𝑁} → ((𝐸𝑋) ⊆ 𝑉 ↔ {𝑀, 𝑁} ⊆ 𝑉))
8 fveqeq2 6658 . . . . 5 ((𝐸𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2))
97, 8anbi12d 633 . . . 4 ((𝐸𝑋) = {𝑀, 𝑁} → (((𝐸𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸𝑋)) = 2) ↔ ({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2)))
10 eqid 2801 . . . . . . 7 {𝑀, 𝑁} = {𝑀, 𝑁}
1110hashprdifel 13759 . . . . . 6 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
12 prssg 4715 . . . . . . . 8 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀𝑉𝑁𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉))
13123adant3 1129 . . . . . . 7 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁) → ((𝑀𝑉𝑁𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉))
1413biimprd 251 . . . . . 6 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁) → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀𝑉𝑁𝑉)))
1511, 14syl 17 . . . . 5 ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀𝑉𝑁𝑉)))
1615impcom 411 . . . 4 (({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀𝑉𝑁𝑉))
179, 16syl6bi 256 . . 3 ((𝐸𝑋) = {𝑀, 𝑁} → (((𝐸𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸𝑋)) = 2) → (𝑀𝑉𝑁𝑉)))
1817com12 32 . 2 (((𝐸𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸𝑋)) = 2) → ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑉𝑁𝑉)))
195, 6, 18syl2anc 587 1 ((𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸𝑋) = {𝑀, 𝑁} → (𝑀𝑉𝑁𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wss 3884  {cpr 4530  dom cdm 5523  cfv 6328  2c2 11684  chash 13690  Vtxcvtx 26793  iEdgciedg 26794  UHGraphcuhgr 26853  UMGraphcumgr 26878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-hash 13691  df-uhgr 26855  df-upgr 26879  df-umgr 26880
This theorem is referenced by:  umgrnloop  26905  usgredgprv  26988
  Copyright terms: Public domain W3C validator