![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgredgprvALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgredgprv 28994, using usgredg2 28992 instead of umgredgprv 28907. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 16-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
usgredg2.e | ⊢ 𝐸 = (iEdg‘𝐺) |
usgredgprv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
usgredgprvALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgredg2.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
2 | usgredgprv.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 1, 2 | usgrss 28974 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝐸‘𝑋) ⊆ 𝑉) |
4 | 1 | usgredg2 28992 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (♯‘(𝐸‘𝑋)) = 2) |
5 | sseq1 4003 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((𝐸‘𝑋) ⊆ 𝑉 ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
6 | fveq2 6891 | . . . . . 6 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (♯‘(𝐸‘𝑋)) = (♯‘{𝑀, 𝑁})) | |
7 | 6 | eqeq1d 2729 | . . . . 5 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → ((♯‘(𝐸‘𝑋)) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)) |
8 | 5, 7 | anbi12d 630 | . . . 4 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) ↔ ({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2))) |
9 | eqid 2727 | . . . . . . 7 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
10 | 9 | hashprdifel 14381 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
11 | prssg 4818 | . . . . . . . 8 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) | |
12 | 11 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ⊆ 𝑉)) |
13 | 12 | biimprd 247 | . . . . . 6 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
14 | 10, 13 | syl 17 | . . . . 5 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ⊆ 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | 14 | impcom 407 | . . . 4 ⊢ (({𝑀, 𝑁} ⊆ 𝑉 ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
16 | 8, 15 | biimtrdi 252 | . . 3 ⊢ ((𝐸‘𝑋) = {𝑀, 𝑁} → (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
17 | 16 | com12 32 | . 2 ⊢ (((𝐸‘𝑋) ⊆ 𝑉 ∧ (♯‘(𝐸‘𝑋)) = 2) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
18 | 3, 4, 17 | syl2anc 583 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ((𝐸‘𝑋) = {𝑀, 𝑁} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ⊆ wss 3944 {cpr 4626 dom cdm 5672 ‘cfv 6542 2c2 12289 ♯chash 14313 Vtxcvtx 28796 iEdgciedg 28797 USGraphcusgr 28949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 df-umgr 28883 df-usgr 28951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |