Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspvadd | Structured version Visualization version GIF version |
Description: The span of a vector sum is included in the span of its arguments. (Contributed by NM, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lspvadd.v | ⊢ 𝑉 = (Base‘𝑊) |
lspvadd.a | ⊢ + = (+g‘𝑊) |
lspvadd.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspvadd | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | lspvadd.n | . 2 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | simp1 1135 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ LMod) | |
4 | prssi 4754 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
5 | 4 | 3adant1 1129 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) |
6 | lspvadd.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
7 | 6, 1, 2 | lspcl 20238 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊)) |
8 | 3, 5, 7 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊)) |
9 | 6, 2 | lspssid 20247 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → {𝑋, 𝑌} ⊆ (𝑁‘{𝑋, 𝑌})) |
10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ (𝑁‘{𝑋, 𝑌})) |
11 | prssg 4752 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 ∈ (𝑁‘{𝑋, 𝑌}) ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑌})) ↔ {𝑋, 𝑌} ⊆ (𝑁‘{𝑋, 𝑌}))) | |
12 | 11 | 3adant1 1129 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 ∈ (𝑁‘{𝑋, 𝑌}) ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑌})) ↔ {𝑋, 𝑌} ⊆ (𝑁‘{𝑋, 𝑌}))) |
13 | 10, 12 | mpbird 256 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑋, 𝑌}) ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))) |
14 | lspvadd.a | . . . 4 ⊢ + = (+g‘𝑊) | |
15 | 14, 1 | lssvacl 20216 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊)) ∧ (𝑋 ∈ (𝑁‘{𝑋, 𝑌}) ∧ 𝑌 ∈ (𝑁‘{𝑋, 𝑌}))) → (𝑋 + 𝑌) ∈ (𝑁‘{𝑋, 𝑌})) |
16 | 3, 8, 13, 15 | syl21anc 835 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ (𝑁‘{𝑋, 𝑌})) |
17 | 1, 2, 3, 8, 16 | lspsnel5a 20258 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 {cpr 4563 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lss 20194 df-lsp 20234 |
This theorem is referenced by: lspsntri 20359 lsmsat 37022 mapdindp3 39736 |
Copyright terms: Public domain | W3C validator |