Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem7 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem7 47932
Description: Lemma 7 for isubgr3stgr 47935. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝑆(𝑖)   𝐻(𝑖)   𝐽(𝑖)

Proof of Theorem isubgr3stgrlem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isubgr3stgr.n . . . 4 𝑁 ∈ ℕ0
2 stgredgel 47917 . . . 4 (𝑁 ∈ ℕ0 → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
31, 2mp1i 13 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
4 c0ex 11227 . . . . . . . . . . . . 13 0 ∈ V
54a1i 11 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 0 ∈ V)
6 prssg 4795 . . . . . . . . . . . 12 ((0 ∈ V ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
75, 6sylan 580 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
8 f1ocnv 6829 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1-onto𝐶)
9 f1ofn 6818 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹 Fn 𝑊)
10 isubgr3stgr.w . . . . . . . . . . . . . . . . . . . 20 𝑊 = (Vtx‘𝑆)
11 isubgr3stgr.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = (StarGr‘𝑁)
1211fveq2i 6878 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
13 stgrvtx 47914 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
141, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
1510, 12, 143eqtri 2762 . . . . . . . . . . . . . . . . . . 19 𝑊 = (0...𝑁)
1615fneq2i 6635 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑊𝐹 Fn (0...𝑁))
179, 16sylib 218 . . . . . . . . . . . . . . . . 17 (𝐹:𝑊1-1-onto𝐶𝐹 Fn (0...𝑁))
188, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐹:𝐶1-1-onto𝑊𝐹 Fn (0...𝑁))
1918ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹 Fn (0...𝑁))
2019adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹 Fn (0...𝑁))
2120anim1i 615 . . . . . . . . . . . . 13 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
22 3anass 1094 . . . . . . . . . . . . 13 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2321, 22sylibr 234 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
2423ex 412 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
257, 24sylbird 260 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2625imp 406 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
27 fnimapr 6961 . . . . . . . . 9 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
2826, 27syl 17 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
29 isubgr3stgr.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
3029clnbgrvtxel 47791 . . . . . . . . . . . . . . . . 17 (𝑋𝑉𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
3130adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
32 isubgr3stgr.c . . . . . . . . . . . . . . . 16 𝐶 = (𝐺 ClNeighbVtx 𝑋)
3331, 32eleqtrrdi 2845 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝐶)
34 simpl 482 . . . . . . . . . . . . . . 15 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹:𝐶1-1-onto𝑊)
3533, 34anim12ci 614 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹:𝐶1-1-onto𝑊𝑋𝐶))
36 simprr 772 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹𝑋) = 0)
3735, 36jca 511 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
3837adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
39 f1ocnvfv 7270 . . . . . . . . . . . . 13 ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) → ((𝐹𝑋) = 0 → (𝐹‘0) = 𝑋))
4039imp 406 . . . . . . . . . . . 12 (((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0) → (𝐹‘0) = 𝑋)
4138, 40syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹‘0) = 𝑋)
4230, 32eleqtrrdi 2845 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋𝐶)
4342ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑋𝐶)
44 f1of 6817 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊𝐶)
458, 44syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊𝐶)
4645ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊𝐶)
4746adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹:𝑊𝐶)
48 fz1ssfz0 13638 . . . . . . . . . . . . . . . . . 18 (1...𝑁) ⊆ (0...𝑁)
4948sseli 3954 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ (0...𝑁))
5049, 15eleqtrrdi 2845 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1...𝑁) → 𝑦𝑊)
5150adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑦𝑊)
5247, 51ffvelcdmd 7074 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝐶)
5343, 52jca 511 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶))
5432eleq2i 2826 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ 𝐶 ↔ (𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋))
55 usgrupgr 29110 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
5655anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5829clnbgrssvtx 47793 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
5932, 58eqsstri 4005 . . . . . . . . . . . . . . . . . . . . 21 𝐶𝑉
6059, 52sselid 3956 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝑉)
61 df-3an 1088 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) ↔ ((𝐺 ∈ UPGraph ∧ 𝑋𝑉) ∧ (𝐹𝑦) ∈ 𝑉))
6257, 60, 61sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
6362ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
64 isubgr3stgr.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (Edg‘𝐺)
6529, 64clnbupgrel 47796 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6663, 65syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6754, 66bitrid 283 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
68 eqeq2 2747 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘0) = 𝑋 → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
70 f1of1 6816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊1-1𝐶)
718, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1𝐶)
7271ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊1-1𝐶)
73 0elfz 13639 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
741, 73ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...𝑁)
7574, 15eleqtrri 2833 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ 𝑊
7650, 75jctir 520 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦𝑊 ∧ 0 ∈ 𝑊))
77 f1veqaeq 7248 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑊1-1𝐶 ∧ (𝑦𝑊 ∧ 0 ∈ 𝑊)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
7872, 76, 77syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
79 elfznn 13568 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
80 nnne0 12272 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
81 eqneqall 2943 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 0 → (𝑦 ≠ 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8280, 81syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8379, 82syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8578, 84syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8685adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8769, 86sylbird 260 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8887adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
89 prcom 4708 . . . . . . . . . . . . . . . . . . . 20 {(𝐹𝑦), 𝑋} = {𝑋, (𝐹𝑦)}
9089eleq1i 2825 . . . . . . . . . . . . . . . . . . 19 ({(𝐹𝑦), 𝑋} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸)
9190biimpi 216 . . . . . . . . . . . . . . . . . 18 ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸)
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9388, 92jaod 859 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9467, 93sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9594impr 454 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ∈ 𝐸)
96 prssi 4797 . . . . . . . . . . . . . . 15 ((𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9796adantl 481 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9895, 97jca 511 . . . . . . . . . . . . 13 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
9953, 98mpidan 689 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
100 preq1 4709 . . . . . . . . . . . . . . 15 ((𝐹‘0) = 𝑋 → {(𝐹‘0), (𝐹𝑦)} = {𝑋, (𝐹𝑦)})
101100eleq1d 2819 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸))
102100sseq1d 3990 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶 ↔ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
103101, 102anbi12d 632 . . . . . . . . . . . . 13 ((𝐹‘0) = 𝑋 → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
104103adantl 481 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
10599, 104mpbird 257 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
10641, 105mpdan 687 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
107106adantr 480 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
108 usgruhgr 29111 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
109108ad3antrrr 730 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐺 ∈ UHGraph)
11059a1i 11 . . . . . . . . . 10 ({0, 𝑦} ⊆ (0...𝑁) → 𝐶𝑉)
111 eqid 2735 . . . . . . . . . . 11 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
112 isubgr3stgr.i . . . . . . . . . . 11 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
11329, 64, 111, 112isubgredg 47827 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
114109, 110, 113syl2an 596 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
115107, 114mpbird 257 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → {(𝐹‘0), (𝐹𝑦)} ∈ 𝐼)
11628, 115eqeltrd 2834 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)
117116ex 412 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼))
118 sseq1 3984 . . . . . . 7 (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) ↔ {0, 𝑦} ⊆ (0...𝑁)))
119 imaeq2 6043 . . . . . . . 8 (𝐽 = {0, 𝑦} → (𝐹𝐽) = (𝐹 “ {0, 𝑦}))
120119eleq1d 2819 . . . . . . 7 (𝐽 = {0, 𝑦} → ((𝐹𝐽) ∈ 𝐼 ↔ (𝐹 “ {0, 𝑦}) ∈ 𝐼))
121118, 120imbi12d 344 . . . . . 6 (𝐽 = {0, 𝑦} → ((𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼) ↔ ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)))
122117, 121syl5ibrcom 247 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
123122rexlimdva 3141 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
124123impcomd 411 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦}) → (𝐹𝐽) ∈ 𝐼))
1253, 124sylbid 240 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) → (𝐹𝐽) ∈ 𝐼))
1261253impia 1117 1 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  wss 3926  {cpr 4603  cmpt 5201  ccnv 5653  cima 5657   Fn wfn 6525  wf 6526  1-1wf1 6527  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128  cn 12238  0cn0 12499  ...cfz 13522  Vtxcvtx 28921  Edgcedg 28972  UHGraphcuhgr 28981  UPGraphcupgr 29005  USGraphcusgr 29074   NeighbVtx cnbgr 29257   ClNeighbVtx cclnbgr 47780   ISubGr cisubgr 47821  StarGrcstgr 47911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-hash 14347  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-edgf 28914  df-vtx 28923  df-iedg 28924  df-edg 28973  df-uhgr 28983  df-upgr 29007  df-uspgr 29075  df-usgr 29076  df-nbgr 29258  df-clnbgr 47781  df-isubgr 47822  df-stgr 47912
This theorem is referenced by:  isubgr3stgrlem8  47933
  Copyright terms: Public domain W3C validator