Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem7 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem7 47964
Description: Lemma 7 for isubgr3stgr 47967. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝑆(𝑖)   𝐻(𝑖)   𝐽(𝑖)

Proof of Theorem isubgr3stgrlem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isubgr3stgr.n . . . 4 𝑁 ∈ ℕ0
2 stgredgel 47949 . . . 4 (𝑁 ∈ ℕ0 → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
31, 2mp1i 13 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
4 c0ex 11144 . . . . . . . . . . . . 13 0 ∈ V
54a1i 11 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 0 ∈ V)
6 prssg 4779 . . . . . . . . . . . 12 ((0 ∈ V ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
75, 6sylan 580 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
8 f1ocnv 6794 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1-onto𝐶)
9 f1ofn 6783 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹 Fn 𝑊)
10 isubgr3stgr.w . . . . . . . . . . . . . . . . . . . 20 𝑊 = (Vtx‘𝑆)
11 isubgr3stgr.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = (StarGr‘𝑁)
1211fveq2i 6843 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
13 stgrvtx 47946 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
141, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
1510, 12, 143eqtri 2756 . . . . . . . . . . . . . . . . . . 19 𝑊 = (0...𝑁)
1615fneq2i 6598 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑊𝐹 Fn (0...𝑁))
179, 16sylib 218 . . . . . . . . . . . . . . . . 17 (𝐹:𝑊1-1-onto𝐶𝐹 Fn (0...𝑁))
188, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐹:𝐶1-1-onto𝑊𝐹 Fn (0...𝑁))
1918ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹 Fn (0...𝑁))
2019adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹 Fn (0...𝑁))
2120anim1i 615 . . . . . . . . . . . . 13 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
22 3anass 1094 . . . . . . . . . . . . 13 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2321, 22sylibr 234 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
2423ex 412 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
257, 24sylbird 260 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2625imp 406 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
27 fnimapr 6926 . . . . . . . . 9 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
2826, 27syl 17 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
29 isubgr3stgr.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
3029clnbgrvtxel 47823 . . . . . . . . . . . . . . . . 17 (𝑋𝑉𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
3130adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
32 isubgr3stgr.c . . . . . . . . . . . . . . . 16 𝐶 = (𝐺 ClNeighbVtx 𝑋)
3331, 32eleqtrrdi 2839 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝐶)
34 simpl 482 . . . . . . . . . . . . . . 15 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹:𝐶1-1-onto𝑊)
3533, 34anim12ci 614 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹:𝐶1-1-onto𝑊𝑋𝐶))
36 simprr 772 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹𝑋) = 0)
3735, 36jca 511 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
3837adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
39 f1ocnvfv 7235 . . . . . . . . . . . . 13 ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) → ((𝐹𝑋) = 0 → (𝐹‘0) = 𝑋))
4039imp 406 . . . . . . . . . . . 12 (((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0) → (𝐹‘0) = 𝑋)
4138, 40syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹‘0) = 𝑋)
4230, 32eleqtrrdi 2839 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋𝐶)
4342ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑋𝐶)
44 f1of 6782 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊𝐶)
458, 44syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊𝐶)
4645ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊𝐶)
4746adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹:𝑊𝐶)
48 fz1ssfz0 13560 . . . . . . . . . . . . . . . . . 18 (1...𝑁) ⊆ (0...𝑁)
4948sseli 3939 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ (0...𝑁))
5049, 15eleqtrrdi 2839 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1...𝑁) → 𝑦𝑊)
5150adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑦𝑊)
5247, 51ffvelcdmd 7039 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝐶)
5343, 52jca 511 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶))
5432eleq2i 2820 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ 𝐶 ↔ (𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋))
55 usgrupgr 29165 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
5655anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5829clnbgrssvtx 47825 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
5932, 58eqsstri 3990 . . . . . . . . . . . . . . . . . . . . 21 𝐶𝑉
6059, 52sselid 3941 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝑉)
61 df-3an 1088 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) ↔ ((𝐺 ∈ UPGraph ∧ 𝑋𝑉) ∧ (𝐹𝑦) ∈ 𝑉))
6257, 60, 61sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
6362ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
64 isubgr3stgr.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (Edg‘𝐺)
6529, 64clnbupgrel 47828 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6663, 65syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6754, 66bitrid 283 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
68 eqeq2 2741 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘0) = 𝑋 → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
70 f1of1 6781 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊1-1𝐶)
718, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1𝐶)
7271ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊1-1𝐶)
73 0elfz 13561 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
741, 73ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...𝑁)
7574, 15eleqtrri 2827 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ 𝑊
7650, 75jctir 520 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦𝑊 ∧ 0 ∈ 𝑊))
77 f1veqaeq 7213 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑊1-1𝐶 ∧ (𝑦𝑊 ∧ 0 ∈ 𝑊)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
7872, 76, 77syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
79 elfznn 13490 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
80 nnne0 12196 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
81 eqneqall 2936 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 0 → (𝑦 ≠ 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8280, 81syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8379, 82syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8578, 84syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8685adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8769, 86sylbird 260 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8887adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
89 prcom 4692 . . . . . . . . . . . . . . . . . . . 20 {(𝐹𝑦), 𝑋} = {𝑋, (𝐹𝑦)}
9089eleq1i 2819 . . . . . . . . . . . . . . . . . . 19 ({(𝐹𝑦), 𝑋} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸)
9190biimpi 216 . . . . . . . . . . . . . . . . . 18 ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸)
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9388, 92jaod 859 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9467, 93sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9594impr 454 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ∈ 𝐸)
96 prssi 4781 . . . . . . . . . . . . . . 15 ((𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9796adantl 481 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9895, 97jca 511 . . . . . . . . . . . . 13 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
9953, 98mpidan 689 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
100 preq1 4693 . . . . . . . . . . . . . . 15 ((𝐹‘0) = 𝑋 → {(𝐹‘0), (𝐹𝑦)} = {𝑋, (𝐹𝑦)})
101100eleq1d 2813 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸))
102100sseq1d 3975 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶 ↔ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
103101, 102anbi12d 632 . . . . . . . . . . . . 13 ((𝐹‘0) = 𝑋 → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
104103adantl 481 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
10599, 104mpbird 257 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
10641, 105mpdan 687 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
107106adantr 480 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
108 usgruhgr 29166 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
109108ad3antrrr 730 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐺 ∈ UHGraph)
11059a1i 11 . . . . . . . . . 10 ({0, 𝑦} ⊆ (0...𝑁) → 𝐶𝑉)
111 eqid 2729 . . . . . . . . . . 11 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
112 isubgr3stgr.i . . . . . . . . . . 11 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
11329, 64, 111, 112isubgredg 47859 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
114109, 110, 113syl2an 596 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
115107, 114mpbird 257 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → {(𝐹‘0), (𝐹𝑦)} ∈ 𝐼)
11628, 115eqeltrd 2828 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)
117116ex 412 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼))
118 sseq1 3969 . . . . . . 7 (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) ↔ {0, 𝑦} ⊆ (0...𝑁)))
119 imaeq2 6016 . . . . . . . 8 (𝐽 = {0, 𝑦} → (𝐹𝐽) = (𝐹 “ {0, 𝑦}))
120119eleq1d 2813 . . . . . . 7 (𝐽 = {0, 𝑦} → ((𝐹𝐽) ∈ 𝐼 ↔ (𝐹 “ {0, 𝑦}) ∈ 𝐼))
121118, 120imbi12d 344 . . . . . 6 (𝐽 = {0, 𝑦} → ((𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼) ↔ ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)))
122117, 121syl5ibrcom 247 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
123122rexlimdva 3134 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
124123impcomd 411 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦}) → (𝐹𝐽) ∈ 𝐼))
1253, 124sylbid 240 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) → (𝐹𝐽) ∈ 𝐼))
1261253impia 1117 1 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  wss 3911  {cpr 4587  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  cn 12162  0cn0 12418  ...cfz 13444  Vtxcvtx 28976  Edgcedg 29027  UHGraphcuhgr 29036  UPGraphcupgr 29060  USGraphcusgr 29129   NeighbVtx cnbgr 29312   ClNeighbVtx cclnbgr 47812   ISubGr cisubgr 47853  StarGrcstgr 47943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-hash 14272  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28969  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-uspgr 29130  df-usgr 29131  df-nbgr 29313  df-clnbgr 47813  df-isubgr 47854  df-stgr 47944
This theorem is referenced by:  isubgr3stgrlem8  47965
  Copyright terms: Public domain W3C validator