Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem7 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem7 47912
Description: Lemma 7 for isubgr3stgr 47915. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝑆(𝑖)   𝐻(𝑖)   𝐽(𝑖)

Proof of Theorem isubgr3stgrlem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isubgr3stgr.n . . . 4 𝑁 ∈ ℕ0
2 stgredgel 47897 . . . 4 (𝑁 ∈ ℕ0 → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
31, 2mp1i 13 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
4 c0ex 11237 . . . . . . . . . . . . 13 0 ∈ V
54a1i 11 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 0 ∈ V)
6 prssg 4799 . . . . . . . . . . . 12 ((0 ∈ V ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
75, 6sylan 580 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
8 f1ocnv 6840 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1-onto𝐶)
9 f1ofn 6829 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹 Fn 𝑊)
10 isubgr3stgr.w . . . . . . . . . . . . . . . . . . . 20 𝑊 = (Vtx‘𝑆)
11 isubgr3stgr.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = (StarGr‘𝑁)
1211fveq2i 6889 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
13 stgrvtx 47894 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
141, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
1510, 12, 143eqtri 2761 . . . . . . . . . . . . . . . . . . 19 𝑊 = (0...𝑁)
1615fneq2i 6646 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑊𝐹 Fn (0...𝑁))
179, 16sylib 218 . . . . . . . . . . . . . . . . 17 (𝐹:𝑊1-1-onto𝐶𝐹 Fn (0...𝑁))
188, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐹:𝐶1-1-onto𝑊𝐹 Fn (0...𝑁))
1918ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹 Fn (0...𝑁))
2019adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹 Fn (0...𝑁))
2120anim1i 615 . . . . . . . . . . . . 13 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
22 3anass 1094 . . . . . . . . . . . . 13 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2321, 22sylibr 234 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
2423ex 412 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
257, 24sylbird 260 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2625imp 406 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
27 fnimapr 6972 . . . . . . . . 9 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
2826, 27syl 17 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
29 isubgr3stgr.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
3029clnbgrvtxel 47789 . . . . . . . . . . . . . . . . 17 (𝑋𝑉𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
3130adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
32 isubgr3stgr.c . . . . . . . . . . . . . . . 16 𝐶 = (𝐺 ClNeighbVtx 𝑋)
3331, 32eleqtrrdi 2844 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝐶)
34 simpl 482 . . . . . . . . . . . . . . 15 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹:𝐶1-1-onto𝑊)
3533, 34anim12ci 614 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹:𝐶1-1-onto𝑊𝑋𝐶))
36 simprr 772 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹𝑋) = 0)
3735, 36jca 511 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
3837adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
39 f1ocnvfv 7280 . . . . . . . . . . . . 13 ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) → ((𝐹𝑋) = 0 → (𝐹‘0) = 𝑋))
4039imp 406 . . . . . . . . . . . 12 (((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0) → (𝐹‘0) = 𝑋)
4138, 40syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹‘0) = 𝑋)
4230, 32eleqtrrdi 2844 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋𝐶)
4342ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑋𝐶)
44 f1of 6828 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊𝐶)
458, 44syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊𝐶)
4645ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊𝐶)
4746adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹:𝑊𝐶)
48 fz1ssfz0 13645 . . . . . . . . . . . . . . . . . 18 (1...𝑁) ⊆ (0...𝑁)
4948sseli 3959 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ (0...𝑁))
5049, 15eleqtrrdi 2844 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1...𝑁) → 𝑦𝑊)
5150adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑦𝑊)
5247, 51ffvelcdmd 7085 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝐶)
5343, 52jca 511 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶))
5432eleq2i 2825 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ 𝐶 ↔ (𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋))
55 usgrupgr 29131 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
5655anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5829clnbgrssvtx 47791 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
5932, 58eqsstri 4010 . . . . . . . . . . . . . . . . . . . . 21 𝐶𝑉
6059, 52sselid 3961 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝑉)
61 df-3an 1088 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) ↔ ((𝐺 ∈ UPGraph ∧ 𝑋𝑉) ∧ (𝐹𝑦) ∈ 𝑉))
6257, 60, 61sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
6362ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
64 isubgr3stgr.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (Edg‘𝐺)
6529, 64clnbupgrel 47794 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6663, 65syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6754, 66bitrid 283 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
68 eqeq2 2746 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘0) = 𝑋 → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
70 f1of1 6827 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊1-1𝐶)
718, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1𝐶)
7271ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊1-1𝐶)
73 0elfz 13646 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
741, 73ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...𝑁)
7574, 15eleqtrri 2832 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ 𝑊
7650, 75jctir 520 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦𝑊 ∧ 0 ∈ 𝑊))
77 f1veqaeq 7259 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑊1-1𝐶 ∧ (𝑦𝑊 ∧ 0 ∈ 𝑊)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
7872, 76, 77syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
79 elfznn 13575 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
80 nnne0 12282 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
81 eqneqall 2942 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 0 → (𝑦 ≠ 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8280, 81syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8379, 82syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8578, 84syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8685adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8769, 86sylbird 260 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8887adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
89 prcom 4712 . . . . . . . . . . . . . . . . . . . 20 {(𝐹𝑦), 𝑋} = {𝑋, (𝐹𝑦)}
9089eleq1i 2824 . . . . . . . . . . . . . . . . . . 19 ({(𝐹𝑦), 𝑋} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸)
9190biimpi 216 . . . . . . . . . . . . . . . . . 18 ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸)
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9388, 92jaod 859 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9467, 93sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9594impr 454 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ∈ 𝐸)
96 prssi 4801 . . . . . . . . . . . . . . 15 ((𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9796adantl 481 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9895, 97jca 511 . . . . . . . . . . . . 13 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
9953, 98mpidan 689 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
100 preq1 4713 . . . . . . . . . . . . . . 15 ((𝐹‘0) = 𝑋 → {(𝐹‘0), (𝐹𝑦)} = {𝑋, (𝐹𝑦)})
101100eleq1d 2818 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸))
102100sseq1d 3995 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶 ↔ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
103101, 102anbi12d 632 . . . . . . . . . . . . 13 ((𝐹‘0) = 𝑋 → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
104103adantl 481 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
10599, 104mpbird 257 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
10641, 105mpdan 687 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
107106adantr 480 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
108 usgruhgr 29132 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
109108ad3antrrr 730 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐺 ∈ UHGraph)
11059a1i 11 . . . . . . . . . 10 ({0, 𝑦} ⊆ (0...𝑁) → 𝐶𝑉)
111 eqid 2734 . . . . . . . . . . 11 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
112 isubgr3stgr.i . . . . . . . . . . 11 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
11329, 64, 111, 112isubgredg 47825 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
114109, 110, 113syl2an 596 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
115107, 114mpbird 257 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → {(𝐹‘0), (𝐹𝑦)} ∈ 𝐼)
11628, 115eqeltrd 2833 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)
117116ex 412 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼))
118 sseq1 3989 . . . . . . 7 (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) ↔ {0, 𝑦} ⊆ (0...𝑁)))
119 imaeq2 6054 . . . . . . . 8 (𝐽 = {0, 𝑦} → (𝐹𝐽) = (𝐹 “ {0, 𝑦}))
120119eleq1d 2818 . . . . . . 7 (𝐽 = {0, 𝑦} → ((𝐹𝐽) ∈ 𝐼 ↔ (𝐹 “ {0, 𝑦}) ∈ 𝐼))
121118, 120imbi12d 344 . . . . . 6 (𝐽 = {0, 𝑦} → ((𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼) ↔ ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)))
122117, 121syl5ibrcom 247 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
123122rexlimdva 3142 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
124123impcomd 411 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦}) → (𝐹𝐽) ∈ 𝐼))
1253, 124sylbid 240 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) → (𝐹𝐽) ∈ 𝐼))
1261253impia 1117 1 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  Vcvv 3463  wss 3931  {cpr 4608  cmpt 5205  ccnv 5664  cima 5668   Fn wfn 6536  wf 6537  1-1wf1 6538  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138  cn 12248  0cn0 12509  ...cfz 13529  Vtxcvtx 28942  Edgcedg 28993  UHGraphcuhgr 29002  UPGraphcupgr 29026  USGraphcusgr 29095   NeighbVtx cnbgr 29278   ClNeighbVtx cclnbgr 47778   ISubGr cisubgr 47819  StarGrcstgr 47891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-hash 14353  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-edgf 28935  df-vtx 28944  df-iedg 28945  df-edg 28994  df-uhgr 29004  df-upgr 29028  df-uspgr 29096  df-usgr 29097  df-nbgr 29279  df-clnbgr 47779  df-isubgr 47820  df-stgr 47892
This theorem is referenced by:  isubgr3stgrlem8  47913
  Copyright terms: Public domain W3C validator