Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr3stgrlem7 Structured version   Visualization version   GIF version

Theorem isubgr3stgrlem7 48071
Description: Lemma 7 for isubgr3stgr 48074. (Contributed by AV, 29-Sep-2025.)
Hypotheses
Ref Expression
isubgr3stgr.v 𝑉 = (Vtx‘𝐺)
isubgr3stgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
isubgr3stgr.c 𝐶 = (𝐺 ClNeighbVtx 𝑋)
isubgr3stgr.n 𝑁 ∈ ℕ0
isubgr3stgr.s 𝑆 = (StarGr‘𝑁)
isubgr3stgr.w 𝑊 = (Vtx‘𝑆)
isubgr3stgr.e 𝐸 = (Edg‘𝐺)
isubgr3stgr.i 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
isubgr3stgr.h 𝐻 = (𝑖𝐼 ↦ (𝐹𝑖))
Assertion
Ref Expression
isubgr3stgrlem7 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Distinct variable groups:   𝐶,𝑖   𝑖,𝐹   𝑖,𝐼   𝑖,𝑊   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑋
Allowed substitution hints:   𝑆(𝑖)   𝐻(𝑖)   𝐽(𝑖)

Proof of Theorem isubgr3stgrlem7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isubgr3stgr.n . . . 4 𝑁 ∈ ℕ0
2 stgredgel 48056 . . . 4 (𝑁 ∈ ℕ0 → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
31, 2mp1i 13 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦})))
4 c0ex 11106 . . . . . . . . . . . . 13 0 ∈ V
54a1i 11 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 0 ∈ V)
6 prssg 4768 . . . . . . . . . . . 12 ((0 ∈ V ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
75, 6sylan 580 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ {0, 𝑦} ⊆ (0...𝑁)))
8 f1ocnv 6775 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1-onto𝐶)
9 f1ofn 6764 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹 Fn 𝑊)
10 isubgr3stgr.w . . . . . . . . . . . . . . . . . . . 20 𝑊 = (Vtx‘𝑆)
11 isubgr3stgr.s . . . . . . . . . . . . . . . . . . . . 21 𝑆 = (StarGr‘𝑁)
1211fveq2i 6825 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝑆) = (Vtx‘(StarGr‘𝑁))
13 stgrvtx 48053 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁))
141, 13ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘(StarGr‘𝑁)) = (0...𝑁)
1510, 12, 143eqtri 2758 . . . . . . . . . . . . . . . . . . 19 𝑊 = (0...𝑁)
1615fneq2i 6579 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑊𝐹 Fn (0...𝑁))
179, 16sylib 218 . . . . . . . . . . . . . . . . 17 (𝐹:𝑊1-1-onto𝐶𝐹 Fn (0...𝑁))
188, 17syl 17 . . . . . . . . . . . . . . . 16 (𝐹:𝐶1-1-onto𝑊𝐹 Fn (0...𝑁))
1918ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹 Fn (0...𝑁))
2019adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹 Fn (0...𝑁))
2120anim1i 615 . . . . . . . . . . . . 13 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
22 3anass 1094 . . . . . . . . . . . . 13 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) ↔ (𝐹 Fn (0...𝑁) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2321, 22sylibr 234 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
2423ex 412 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
257, 24sylbird 260 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁))))
2625imp 406 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)))
27 fnimapr 6905 . . . . . . . . 9 ((𝐹 Fn (0...𝑁) ∧ 0 ∈ (0...𝑁) ∧ 𝑦 ∈ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
2826, 27syl 17 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) = {(𝐹‘0), (𝐹𝑦)})
29 isubgr3stgr.v . . . . . . . . . . . . . . . . . 18 𝑉 = (Vtx‘𝐺)
3029clnbgrvtxel 47928 . . . . . . . . . . . . . . . . 17 (𝑋𝑉𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
3130adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋 ∈ (𝐺 ClNeighbVtx 𝑋))
32 isubgr3stgr.c . . . . . . . . . . . . . . . 16 𝐶 = (𝐺 ClNeighbVtx 𝑋)
3331, 32eleqtrrdi 2842 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → 𝑋𝐶)
34 simpl 482 . . . . . . . . . . . . . . 15 ((𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) → 𝐹:𝐶1-1-onto𝑊)
3533, 34anim12ci 614 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹:𝐶1-1-onto𝑊𝑋𝐶))
36 simprr 772 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐹𝑋) = 0)
3735, 36jca 511 . . . . . . . . . . . . 13 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
3837adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0))
39 f1ocnvfv 7212 . . . . . . . . . . . . 13 ((𝐹:𝐶1-1-onto𝑊𝑋𝐶) → ((𝐹𝑋) = 0 → (𝐹‘0) = 𝑋))
4039imp 406 . . . . . . . . . . . 12 (((𝐹:𝐶1-1-onto𝑊𝑋𝐶) ∧ (𝐹𝑋) = 0) → (𝐹‘0) = 𝑋)
4138, 40syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹‘0) = 𝑋)
4230, 32eleqtrrdi 2842 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋𝐶)
4342ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑋𝐶)
44 f1of 6763 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊𝐶)
458, 44syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊𝐶)
4645ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊𝐶)
4746adantr 480 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐹:𝑊𝐶)
48 fz1ssfz0 13523 . . . . . . . . . . . . . . . . . 18 (1...𝑁) ⊆ (0...𝑁)
4948sseli 3925 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ (0...𝑁))
5049, 15eleqtrrdi 2842 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (1...𝑁) → 𝑦𝑊)
5150adantl 481 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝑦𝑊)
5247, 51ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝐶)
5343, 52jca 511 . . . . . . . . . . . . 13 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶))
5432eleq2i 2823 . . . . . . . . . . . . . . . . 17 ((𝐹𝑦) ∈ 𝐶 ↔ (𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋))
55 usgrupgr 29163 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
5655anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ USGraph ∧ 𝑋𝑉) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5756ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉))
5829clnbgrssvtx 47930 . . . . . . . . . . . . . . . . . . . . . 22 (𝐺 ClNeighbVtx 𝑋) ⊆ 𝑉
5932, 58eqsstri 3976 . . . . . . . . . . . . . . . . . . . . 21 𝐶𝑉
6059, 52sselid 3927 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐹𝑦) ∈ 𝑉)
61 df-3an 1088 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) ↔ ((𝐺 ∈ UPGraph ∧ 𝑋𝑉) ∧ (𝐹𝑦) ∈ 𝑉))
6257, 60, 61sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
6362ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉))
64 isubgr3stgr.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (Edg‘𝐺)
6529, 64clnbupgrel 47933 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ UPGraph ∧ 𝑋𝑉 ∧ (𝐹𝑦) ∈ 𝑉) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6663, 65syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
6754, 66bitrid 283 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 ↔ ((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸)))
68 eqeq2 2743 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘0) = 𝑋 → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
6968adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) ↔ (𝐹𝑦) = 𝑋))
70 f1of1 6762 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:𝑊1-1-onto𝐶𝐹:𝑊1-1𝐶)
718, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝐶1-1-onto𝑊𝐹:𝑊1-1𝐶)
7271ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → 𝐹:𝑊1-1𝐶)
73 0elfz 13524 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
741, 73ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...𝑁)
7574, 15eleqtrri 2830 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ 𝑊
7650, 75jctir 520 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦𝑊 ∧ 0 ∈ 𝑊))
77 f1veqaeq 7190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑊1-1𝐶 ∧ (𝑦𝑊 ∧ 0 ∈ 𝑊)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
7872, 76, 77syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → 𝑦 = 0))
79 elfznn 13453 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
80 nnne0 12159 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
81 eqneqall 2939 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 0 → (𝑦 ≠ 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8280, 81syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8379, 82syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (1...𝑁) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝑦 = 0 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8578, 84syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8685adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = (𝐹‘0) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8769, 86sylbird 260 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
8887adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) = 𝑋 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
89 prcom 4682 . . . . . . . . . . . . . . . . . . . 20 {(𝐹𝑦), 𝑋} = {𝑋, (𝐹𝑦)}
9089eleq1i 2822 . . . . . . . . . . . . . . . . . . 19 ({(𝐹𝑦), 𝑋} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸)
9190biimpi 216 . . . . . . . . . . . . . . . . . 18 ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸)
9291a1i 11 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ({(𝐹𝑦), 𝑋} ∈ 𝐸 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9388, 92jaod 859 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → (((𝐹𝑦) = 𝑋 ∨ {(𝐹𝑦), 𝑋} ∈ 𝐸) → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9467, 93sylbid 240 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ 𝑋𝐶) → ((𝐹𝑦) ∈ 𝐶 → {𝑋, (𝐹𝑦)} ∈ 𝐸))
9594impr 454 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ∈ 𝐸)
96 prssi 4770 . . . . . . . . . . . . . . 15 ((𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9796adantl 481 . . . . . . . . . . . . . 14 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → {𝑋, (𝐹𝑦)} ⊆ 𝐶)
9895, 97jca 511 . . . . . . . . . . . . 13 ((((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) ∧ (𝑋𝐶 ∧ (𝐹𝑦) ∈ 𝐶)) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
9953, 98mpidan 689 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
100 preq1 4683 . . . . . . . . . . . . . . 15 ((𝐹‘0) = 𝑋 → {(𝐹‘0), (𝐹𝑦)} = {𝑋, (𝐹𝑦)})
101100eleq1d 2816 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ↔ {𝑋, (𝐹𝑦)} ∈ 𝐸))
102100sseq1d 3961 . . . . . . . . . . . . . 14 ((𝐹‘0) = 𝑋 → ({(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶 ↔ {𝑋, (𝐹𝑦)} ⊆ 𝐶))
103101, 102anbi12d 632 . . . . . . . . . . . . 13 ((𝐹‘0) = 𝑋 → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
104103adantl 481 . . . . . . . . . . . 12 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → (({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶) ↔ ({𝑋, (𝐹𝑦)} ∈ 𝐸 ∧ {𝑋, (𝐹𝑦)} ⊆ 𝐶)))
10599, 104mpbird 257 . . . . . . . . . . 11 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝐹‘0) = 𝑋) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
10641, 105mpdan 687 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
107106adantr 480 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶))
108 usgruhgr 29164 . . . . . . . . . . 11 (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph)
109108ad3antrrr 730 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → 𝐺 ∈ UHGraph)
11059a1i 11 . . . . . . . . . 10 ({0, 𝑦} ⊆ (0...𝑁) → 𝐶𝑉)
111 eqid 2731 . . . . . . . . . . 11 (𝐺 ISubGr 𝐶) = (𝐺 ISubGr 𝐶)
112 isubgr3stgr.i . . . . . . . . . . 11 𝐼 = (Edg‘(𝐺 ISubGr 𝐶))
11329, 64, 111, 112isubgredg 47965 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝐶𝑉) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
114109, 110, 113syl2an 596 . . . . . . . . 9 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐼 ↔ ({(𝐹‘0), (𝐹𝑦)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹𝑦)} ⊆ 𝐶)))
115107, 114mpbird 257 . . . . . . . 8 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → {(𝐹‘0), (𝐹𝑦)} ∈ 𝐼)
11628, 115eqeltrd 2831 . . . . . . 7 (((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) ∧ {0, 𝑦} ⊆ (0...𝑁)) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)
117116ex 412 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼))
118 sseq1 3955 . . . . . . 7 (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) ↔ {0, 𝑦} ⊆ (0...𝑁)))
119 imaeq2 6004 . . . . . . . 8 (𝐽 = {0, 𝑦} → (𝐹𝐽) = (𝐹 “ {0, 𝑦}))
120119eleq1d 2816 . . . . . . 7 (𝐽 = {0, 𝑦} → ((𝐹𝐽) ∈ 𝐼 ↔ (𝐹 “ {0, 𝑦}) ∈ 𝐼))
121118, 120imbi12d 344 . . . . . 6 (𝐽 = {0, 𝑦} → ((𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼) ↔ ({0, 𝑦} ⊆ (0...𝑁) → (𝐹 “ {0, 𝑦}) ∈ 𝐼)))
122117, 121syl5ibrcom 247 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) ∧ 𝑦 ∈ (1...𝑁)) → (𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
123122rexlimdva 3133 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦} → (𝐽 ⊆ (0...𝑁) → (𝐹𝐽) ∈ 𝐼)))
124123impcomd 411 . . 3 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → ((𝐽 ⊆ (0...𝑁) ∧ ∃𝑦 ∈ (1...𝑁)𝐽 = {0, 𝑦}) → (𝐹𝐽) ∈ 𝐼))
1253, 124sylbid 240 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0)) → (𝐽 ∈ (Edg‘(StarGr‘𝑁)) → (𝐹𝐽) ∈ 𝐼))
1261253impia 1117 1 (((𝐺 ∈ USGraph ∧ 𝑋𝑉) ∧ (𝐹:𝐶1-1-onto𝑊 ∧ (𝐹𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (𝐹𝐽) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3897  {cpr 4575  cmpt 5170  ccnv 5613  cima 5617   Fn wfn 6476  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  cn 12125  0cn0 12381  ...cfz 13407  Vtxcvtx 28974  Edgcedg 29025  UHGraphcuhgr 29034  UPGraphcupgr 29058  USGraphcusgr 29127   NeighbVtx cnbgr 29310   ClNeighbVtx cclnbgr 47917   ISubGr cisubgr 47959  StarGrcstgr 48050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28967  df-vtx 28976  df-iedg 28977  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-uspgr 29128  df-usgr 29129  df-nbgr 29311  df-clnbgr 47918  df-isubgr 47960  df-stgr 48051
This theorem is referenced by:  isubgr3stgrlem8  48072
  Copyright terms: Public domain W3C validator