Step | Hyp | Ref
| Expression |
1 | | fourierdlem20.i |
. . 3
⊢ 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) |
2 | | ssrab2 4013 |
. . . 4
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ (0..^𝑀) |
3 | | fzossfz 13406 |
. . . . . . . 8
⊢
(0..^𝑀) ⊆
(0...𝑀) |
4 | | fzssz 13258 |
. . . . . . . 8
⊢
(0...𝑀) ⊆
ℤ |
5 | 3, 4 | sstri 3930 |
. . . . . . 7
⊢
(0..^𝑀) ⊆
ℤ |
6 | 2, 5 | sstri 3930 |
. . . . . 6
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℤ |
7 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℤ) |
8 | | 0z 12330 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
9 | | 0le0 12074 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
10 | | eluz2 12588 |
. . . . . . . . . 10
⊢ (0 ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 0 ∈
ℤ ∧ 0 ≤ 0)) |
11 | 8, 8, 9, 10 | mpbir3an 1340 |
. . . . . . . . 9
⊢ 0 ∈
(ℤ≥‘0) |
12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
(ℤ≥‘0)) |
13 | | fourierdlem20.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
14 | 13 | nnzd 12425 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
15 | 13 | nngt0d 12022 |
. . . . . . . 8
⊢ (𝜑 → 0 < 𝑀) |
16 | | elfzo2 13390 |
. . . . . . . 8
⊢ (0 ∈
(0..^𝑀) ↔ (0 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
17 | 12, 14, 15, 16 | syl3anbrc 1342 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
18 | | fourierdlem20.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
19 | 3, 17 | sselid 3919 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
20 | 18, 19 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
21 | | fourierdlem20.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
22 | | fourierdlem20.t |
. . . . . . . . . . 11
⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) |
23 | 21 | rexrd 11025 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
24 | | fourierdlem20.b |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ ℝ) |
25 | 24 | rexrd 11025 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
26 | | fourierdlem20.aleb |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
27 | | lbicc2 13196 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
28 | 23, 25, 26, 27 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
29 | | ubicc2 13197 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
30 | 23, 25, 26, 29 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
31 | 28, 30 | jca 512 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵))) |
32 | | prssg 4752 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
33 | 23, 25, 32 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
34 | 31, 33 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐴[,]𝐵)) |
35 | | inss2 4163 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵) |
36 | | ioossicc 13165 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
37 | 35, 36 | sstri 3930 |
. . . . . . . . . . . . 13
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) |
38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
39 | 34, 38 | unssd 4120 |
. . . . . . . . . . 11
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ (𝐴[,]𝐵)) |
40 | 22, 39 | eqsstrid 3969 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ⊆ (𝐴[,]𝐵)) |
41 | 21, 24 | iccssred 13166 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
42 | 40, 41 | sstrd 3931 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆ ℝ) |
43 | | fourierdlem20.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
44 | | isof1o 7194 |
. . . . . . . . . . 11
⊢ (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto→𝑇) |
45 | | f1of 6716 |
. . . . . . . . . . 11
⊢ (𝑆:(0...𝑁)–1-1-onto→𝑇 → 𝑆:(0...𝑁)⟶𝑇) |
46 | 43, 44, 45 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆:(0...𝑁)⟶𝑇) |
47 | | fourierdlem20.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) |
48 | | elfzofz 13403 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁)) |
49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
50 | 46, 49 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝐽) ∈ 𝑇) |
51 | 42, 50 | sseldd 3922 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) |
52 | | fourierdlem20.q0 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) ≤ 𝐴) |
53 | 40, 50 | sseldd 3922 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝐽) ∈ (𝐴[,]𝐵)) |
54 | | iccgelb 13135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘𝐽) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘𝐽)) |
55 | 23, 25, 53, 54 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≤ (𝑆‘𝐽)) |
56 | 20, 21, 51, 52, 55 | letrd 11132 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ≤ (𝑆‘𝐽)) |
57 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑄‘𝑘) = (𝑄‘0)) |
58 | 57 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ↔ (𝑄‘0) ≤ (𝑆‘𝐽))) |
59 | 58 | elrab 3624 |
. . . . . . 7
⊢ (0 ∈
{𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝑆‘𝐽))) |
60 | 17, 56, 59 | sylanbrc 583 |
. . . . . 6
⊢ (𝜑 → 0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
61 | 60 | ne0d 4269 |
. . . . 5
⊢ (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅) |
62 | 13 | nnred 11988 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
63 | 2 | sseli 3917 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} → 𝑗 ∈ (0..^𝑀)) |
64 | | elfzo0le 13431 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ≤ 𝑀) |
65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ (𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} → 𝑗 ≤ 𝑀) |
66 | 65 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) → 𝑗 ≤ 𝑀) |
67 | 66 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑀) |
68 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝑗 ≤ 𝑥 ↔ 𝑗 ≤ 𝑀)) |
69 | 68 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥 ↔ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑀)) |
70 | 69 | rspcev 3561 |
. . . . . 6
⊢ ((𝑀 ∈ ℝ ∧
∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑀) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) |
71 | 62, 67, 70 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) |
72 | | suprzcl 12400 |
. . . . 5
⊢ (({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℤ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
73 | 7, 61, 71, 72 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
74 | 2, 73 | sselid 3919 |
. . 3
⊢ (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ∈ (0..^𝑀)) |
75 | 1, 74 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
76 | 3, 75 | sselid 3919 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
77 | 18, 76 | ffvelrnd 6962 |
. . . 4
⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ) |
78 | 77 | rexrd 11025 |
. . 3
⊢ (𝜑 → (𝑄‘𝐼) ∈
ℝ*) |
79 | | fzofzp1 13484 |
. . . . . 6
⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) |
80 | 75, 79 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
81 | 18, 80 | ffvelrnd 6962 |
. . . 4
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
82 | 81 | rexrd 11025 |
. . 3
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
83 | 1, 73 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
84 | | nfrab1 3317 |
. . . . . . . 8
⊢
Ⅎ𝑘{𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} |
85 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘ℝ |
86 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘
< |
87 | 84, 85, 86 | nfsup 9210 |
. . . . . . 7
⊢
Ⅎ𝑘sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) |
88 | 1, 87 | nfcxfr 2905 |
. . . . . 6
⊢
Ⅎ𝑘𝐼 |
89 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑘(0..^𝑀) |
90 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑄 |
91 | 90, 88 | nffv 6784 |
. . . . . . 7
⊢
Ⅎ𝑘(𝑄‘𝐼) |
92 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘
≤ |
93 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘(𝑆‘𝐽) |
94 | 91, 92, 93 | nfbr 5121 |
. . . . . 6
⊢
Ⅎ𝑘(𝑄‘𝐼) ≤ (𝑆‘𝐽) |
95 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑘 = 𝐼 → (𝑄‘𝑘) = (𝑄‘𝐼)) |
96 | 95 | breq1d 5084 |
. . . . . 6
⊢ (𝑘 = 𝐼 → ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ↔ (𝑄‘𝐼) ≤ (𝑆‘𝐽))) |
97 | 88, 89, 94, 96 | elrabf 3620 |
. . . . 5
⊢ (𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ↔ (𝐼 ∈ (0..^𝑀) ∧ (𝑄‘𝐼) ≤ (𝑆‘𝐽))) |
98 | 83, 97 | sylib 217 |
. . . 4
⊢ (𝜑 → (𝐼 ∈ (0..^𝑀) ∧ (𝑄‘𝐼) ≤ (𝑆‘𝐽))) |
99 | 98 | simprd 496 |
. . 3
⊢ (𝜑 → (𝑄‘𝐼) ≤ (𝑆‘𝐽)) |
100 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) |
101 | 82 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
102 | | iccssxr 13162 |
. . . . . . . . . 10
⊢ (𝐴[,]𝐵) ⊆
ℝ* |
103 | 40, 102 | sstrdi 3933 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆
ℝ*) |
104 | | fzofzp1 13484 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁)) |
105 | 47, 104 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 + 1) ∈ (0...𝑁)) |
106 | 46, 105 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ 𝑇) |
107 | 103, 106 | sseldd 3922 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈
ℝ*) |
108 | 107 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → (𝑆‘(𝐽 + 1)) ∈
ℝ*) |
109 | | xrltnle 11042 |
. . . . . . 7
⊢ (((𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑆‘(𝐽 + 1)) ∈ ℝ*) →
((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ↔ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1)))) |
110 | 101, 108,
109 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ↔ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1)))) |
111 | 100, 110 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) |
112 | | fzssz 13258 |
. . . . . 6
⊢
(0...𝑁) ⊆
ℤ |
113 | | f1ofo 6723 |
. . . . . . . . . 10
⊢ (𝑆:(0...𝑁)–1-1-onto→𝑇 → 𝑆:(0...𝑁)–onto→𝑇) |
114 | 43, 44, 113 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆:(0...𝑁)–onto→𝑇) |
115 | 114 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝑆:(0...𝑁)–onto→𝑇) |
116 | | ffun 6603 |
. . . . . . . . . . . . . 14
⊢ (𝑄:(0...𝑀)⟶ℝ → Fun 𝑄) |
117 | 18, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝑄) |
118 | 18 | fdmd 6611 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝑄 = (0...𝑀)) |
119 | 118 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0...𝑀) = dom 𝑄) |
120 | 80, 119 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐼 + 1) ∈ dom 𝑄) |
121 | | fvelrn 6954 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑄 ∧ (𝐼 + 1) ∈ dom 𝑄) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄) |
122 | 117, 120,
121 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄) |
123 | 122 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄) |
124 | 23 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐴 ∈
ℝ*) |
125 | 25 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐵 ∈
ℝ*) |
126 | 81 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
127 | 41, 53 | sseldd 3922 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) |
128 | 4 | sseli 3917 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ (0...𝑀) → 𝐼 ∈ ℤ) |
129 | | zre 12323 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ ℤ → 𝐼 ∈
ℝ) |
130 | 76, 128, 129 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐼 ∈ ℝ) |
131 | 130 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → 𝐼 ∈ ℝ) |
132 | 131 | ltp1d 11905 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → 𝐼 < (𝐼 + 1)) |
133 | 132 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → 𝐼 < (𝐼 + 1)) |
134 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
135 | 127 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → (𝑆‘𝐽) ∈ ℝ) |
136 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
137 | 134, 135,
136 | nltled 11125 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) |
138 | 130 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → 𝐼 ∈ ℝ) |
139 | | 1red 10976 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → 1 ∈ ℝ) |
140 | 138, 139 | readdcld 11004 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ∈ ℝ) |
141 | | elfzoelz 13387 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ) |
142 | 141 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ) |
143 | 142 | ssriv 3925 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0..^𝑀) ⊆
ℝ |
144 | 2, 143 | sstri 3930 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℝ |
145 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℝ) |
146 | 61 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅) |
147 | 71 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) |
148 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
149 | 127 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘𝐽) ∈ ℝ) |
150 | 24 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → 𝐵 ∈ ℝ) |
151 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) |
152 | 42, 106 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
153 | 152 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
154 | | elfzoelz 13387 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ) |
155 | | zre 12323 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐽 ∈ ℤ → 𝐽 ∈
ℝ) |
156 | 47, 154, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝐽 ∈ ℝ) |
157 | 156 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐽 < (𝐽 + 1)) |
158 | | isorel 7197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝐽 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝐽 < (𝐽 + 1) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) |
159 | 43, 49, 105, 158 | syl12anc 834 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐽 < (𝐽 + 1) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) |
160 | 157, 159 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
161 | 160 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
162 | 40, 106 | sseldd 3922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ (𝐴[,]𝐵)) |
163 | | iccleub 13134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘(𝐽 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
164 | 23, 25, 162, 163 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
165 | 164 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
166 | 149, 153,
150, 161, 165 | ltletrd 11135 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘𝐽) < 𝐵) |
167 | 148, 149,
150, 151, 166 | lelttrd 11133 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑄‘(𝐼 + 1)) < 𝐵) |
168 | 167 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝐼 + 1)) < 𝐵) |
169 | 24 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝐵 ∈ ℝ) |
170 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
171 | | fourierdlem20.qm |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐵 ≤ (𝑄‘𝑀)) |
172 | 171 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝐵 ≤ (𝑄‘𝑀)) |
173 | 14 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝑀 ∈ ℤ) |
174 | 80 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0...𝑀)) |
175 | | fzval3 13456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑀 ∈ ℤ →
(0...𝑀) = (0..^(𝑀 + 1))) |
176 | 14, 175 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (0...𝑀) = (0..^(𝑀 + 1))) |
177 | 176 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (0...𝑀) = (0..^(𝑀 + 1))) |
178 | 174, 177 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0..^(𝑀 + 1))) |
179 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ¬ (𝐼 + 1) ∈ (0..^𝑀)) |
180 | 178, 179 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ((𝐼 + 1) ∈ (0..^(𝑀 + 1)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀))) |
181 | | elfzonelfzo 13489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℤ → (((𝐼 + 1) ∈ (0..^(𝑀 + 1)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (𝑀..^(𝑀 + 1)))) |
182 | 173, 180,
181 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (𝑀..^(𝑀 + 1))) |
183 | | fzval3 13456 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = (𝑀..^(𝑀 + 1))) |
184 | 14, 183 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑀...𝑀) = (𝑀..^(𝑀 + 1))) |
185 | 184 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑀..^(𝑀 + 1)) = (𝑀...𝑀)) |
186 | 185 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑀..^(𝑀 + 1)) = (𝑀...𝑀)) |
187 | 182, 186 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (𝑀...𝑀)) |
188 | | elfz1eq 13267 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐼 + 1) ∈ (𝑀...𝑀) → (𝐼 + 1) = 𝑀) |
189 | 187, 188 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) = 𝑀) |
190 | 189 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝑀 = (𝐼 + 1)) |
191 | 190 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑄‘𝑀) = (𝑄‘(𝐼 + 1))) |
192 | 172, 191 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝐵 ≤ (𝑄‘(𝐼 + 1))) |
193 | 169, 170,
192 | lensymd 11126 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ¬ (𝑄‘(𝐼 + 1)) < 𝐵) |
194 | 193 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ¬ (𝑄‘(𝐼 + 1)) < 𝐵) |
195 | 168, 194 | condan 815 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ∈ (0..^𝑀)) |
196 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘
+ |
197 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘1 |
198 | 88, 196, 197 | nfov 7305 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝐼 + 1) |
199 | 90, 198 | nffv 6784 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝑄‘(𝐼 + 1)) |
200 | 199, 92, 93 | nfbr 5121 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽) |
201 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝐼 + 1) → (𝑄‘𝑘) = (𝑄‘(𝐼 + 1))) |
202 | 201 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝐼 + 1) → ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ↔ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽))) |
203 | 198, 89, 200, 202 | elrabf 3620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ↔ ((𝐼 + 1) ∈ (0..^𝑀) ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽))) |
204 | 195, 151,
203 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
205 | | suprub 11936 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℝ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) ∧ (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < )) |
206 | 145, 146,
147, 204, 205 | syl31anc 1372 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < )) |
207 | 206, 1 | breqtrrdi 5116 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ≤ 𝐼) |
208 | 140, 138,
207 | lensymd 11126 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → ¬ 𝐼 < (𝐼 + 1)) |
209 | 208 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → ¬ 𝐼 < (𝐼 + 1)) |
210 | 137, 209 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → ¬ 𝐼 < (𝐼 + 1)) |
211 | 133, 210 | condan 815 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
212 | 81, 211 | mpdan 684 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
213 | 21, 127, 81, 55, 212 | lelttrd 11133 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 < (𝑄‘(𝐼 + 1))) |
214 | 213 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐴 < (𝑄‘(𝐼 + 1))) |
215 | 152 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
216 | 24 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐵 ∈ ℝ) |
217 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) |
218 | 164 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
219 | 126, 215,
216, 217, 218 | ltletrd 11135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) < 𝐵) |
220 | 124, 125,
126, 214, 219 | eliood 43036 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ (𝐴(,)𝐵)) |
221 | 123, 220 | elind 4128 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ (ran 𝑄 ∩ (𝐴(,)𝐵))) |
222 | | elun2 4111 |
. . . . . . . . . 10
⊢ ((𝑄‘(𝐼 + 1)) ∈ (ran 𝑄 ∩ (𝐴(,)𝐵)) → (𝑄‘(𝐼 + 1)) ∈ ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))) |
223 | 221, 222 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))) |
224 | 223, 22 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ 𝑇) |
225 | | foelrn 6982 |
. . . . . . . 8
⊢ ((𝑆:(0...𝑁)–onto→𝑇 ∧ (𝑄‘(𝐼 + 1)) ∈ 𝑇) → ∃𝑗 ∈ (0...𝑁)(𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) |
226 | 115, 224,
225 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → ∃𝑗 ∈ (0...𝑁)(𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) |
227 | 212 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
228 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) |
229 | 227, 228 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝐽) < (𝑆‘𝑗)) |
230 | 229 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝐽) < (𝑆‘𝑗)) |
231 | 43 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
232 | 49 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) |
233 | 232 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) |
234 | | isorel 7197 |
. . . . . . . . . . . . 13
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (𝐽 < 𝑗 ↔ (𝑆‘𝐽) < (𝑆‘𝑗))) |
235 | 231, 233,
234 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝐽 < 𝑗 ↔ (𝑆‘𝐽) < (𝑆‘𝑗))) |
236 | 230, 235 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝐽 < 𝑗) |
237 | 236 | adantllr 716 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝐽 < 𝑗) |
238 | | eqcom 2745 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) ↔ (𝑆‘𝑗) = (𝑄‘(𝐼 + 1))) |
239 | 238 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) → (𝑆‘𝑗) = (𝑄‘(𝐼 + 1))) |
240 | 239 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) = (𝑄‘(𝐼 + 1))) |
241 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) |
242 | 240, 241 | eqbrtrd 5096 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) < (𝑆‘(𝐽 + 1))) |
243 | 242 | adantll 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) < (𝑆‘(𝐽 + 1))) |
244 | 243 | adantlr 712 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) < (𝑆‘(𝐽 + 1))) |
245 | 43 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
246 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
247 | 105 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐽 + 1) ∈ (0...𝑁)) |
248 | | isorel 7197 |
. . . . . . . . . . . . 13
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝑗 < (𝐽 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝐽 + 1)))) |
249 | 245, 246,
247, 248 | syl12anc 834 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 < (𝐽 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝐽 + 1)))) |
250 | 249 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑗 < (𝐽 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝐽 + 1)))) |
251 | 244, 250 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝑗 < (𝐽 + 1)) |
252 | 237, 251 | jca 512 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
253 | 252 | ex 413 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) → (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)))) |
254 | 253 | reximdva 3203 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (∃𝑗 ∈ (0...𝑁)(𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) → ∃𝑗 ∈ (0...𝑁)(𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)))) |
255 | 226, 254 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → ∃𝑗 ∈ (0...𝑁)(𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
256 | | ssrexv 3988 |
. . . . . 6
⊢
((0...𝑁) ⊆
ℤ → (∃𝑗
∈ (0...𝑁)(𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)) → ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)))) |
257 | 112, 255,
256 | mpsyl 68 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
258 | 111, 257 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
259 | | simplr 766 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝑗 ∈ ℤ) |
260 | 47, 154 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ ℤ) |
261 | 260 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝐽 ∈ ℤ) |
262 | | simprl 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝐽 < 𝑗) |
263 | | simprr 770 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝑗 < (𝐽 + 1)) |
264 | | btwnnz 12396 |
. . . . . . . 8
⊢ ((𝐽 ∈ ℤ ∧ 𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)) → ¬ 𝑗 ∈ ℤ) |
265 | 261, 262,
263, 264 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → ¬ 𝑗 ∈ ℤ) |
266 | 259, 265 | pm2.65da 814 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → ¬ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
267 | 266 | nrexdv 3198 |
. . . . 5
⊢ (𝜑 → ¬ ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
268 | 267 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ¬ ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
269 | 258, 268 | condan 815 |
. . 3
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) |
270 | | ioossioo 13173 |
. . 3
⊢ ((((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) ∧
((𝑄‘𝐼) ≤ (𝑆‘𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1)))) → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
271 | 78, 82, 99, 269, 270 | syl22anc 836 |
. 2
⊢ (𝜑 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
272 | | fveq2 6774 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑄‘𝑖) = (𝑄‘𝐼)) |
273 | | oveq1 7282 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1)) |
274 | 273 | fveq2d 6778 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝐼 + 1))) |
275 | 272, 274 | oveq12d 7293 |
. . . 4
⊢ (𝑖 = 𝐼 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
276 | 275 | sseq2d 3953 |
. . 3
⊢ (𝑖 = 𝐼 → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
277 | 276 | rspcev 3561 |
. 2
⊢ ((𝐼 ∈ (0..^𝑀) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
278 | 75, 271, 277 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |