| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem20.i |
. . 3
⊢ 𝐼 = sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) |
| 2 | | ssrab2 4080 |
. . . 4
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ (0..^𝑀) |
| 3 | | fzossfz 13718 |
. . . . . . . 8
⊢
(0..^𝑀) ⊆
(0...𝑀) |
| 4 | | fzssz 13566 |
. . . . . . . 8
⊢
(0...𝑀) ⊆
ℤ |
| 5 | 3, 4 | sstri 3993 |
. . . . . . 7
⊢
(0..^𝑀) ⊆
ℤ |
| 6 | 2, 5 | sstri 3993 |
. . . . . 6
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℤ |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℤ) |
| 8 | | 0z 12624 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
| 9 | | 0le0 12367 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 10 | | eluz2 12884 |
. . . . . . . . . 10
⊢ (0 ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 0 ∈
ℤ ∧ 0 ≤ 0)) |
| 11 | 8, 8, 9, 10 | mpbir3an 1342 |
. . . . . . . . 9
⊢ 0 ∈
(ℤ≥‘0) |
| 12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
(ℤ≥‘0)) |
| 13 | | fourierdlem20.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 14 | 13 | nnzd 12640 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 15 | 13 | nngt0d 12315 |
. . . . . . . 8
⊢ (𝜑 → 0 < 𝑀) |
| 16 | | elfzo2 13702 |
. . . . . . . 8
⊢ (0 ∈
(0..^𝑀) ↔ (0 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀)) |
| 17 | 12, 14, 15, 16 | syl3anbrc 1344 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
| 18 | | fourierdlem20.q |
. . . . . . . . 9
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 19 | 3, 17 | sselid 3981 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 20 | 18, 19 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 21 | | fourierdlem20.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 22 | | fourierdlem20.t |
. . . . . . . . . . 11
⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) |
| 23 | 21 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 24 | | fourierdlem20.b |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 25 | 24 | rexrd 11311 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 26 | | fourierdlem20.aleb |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 27 | | lbicc2 13504 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 28 | 23, 25, 26, 27 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 29 | | ubicc2 13505 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 30 | 23, 25, 26, 29 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
| 31 | 28, 30 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵))) |
| 32 | | prssg 4819 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
| 33 | 23, 25, 32 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) ↔ {𝐴, 𝐵} ⊆ (𝐴[,]𝐵))) |
| 34 | 31, 33 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐴, 𝐵} ⊆ (𝐴[,]𝐵)) |
| 35 | | inss2 4238 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵) |
| 36 | | ioossicc 13473 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 37 | 35, 36 | sstri 3993 |
. . . . . . . . . . . . 13
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵) |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴[,]𝐵)) |
| 39 | 34, 38 | unssd 4192 |
. . . . . . . . . . 11
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ (𝐴[,]𝐵)) |
| 40 | 22, 39 | eqsstrid 4022 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ⊆ (𝐴[,]𝐵)) |
| 41 | 21, 24 | iccssred 13474 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 42 | 40, 41 | sstrd 3994 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆ ℝ) |
| 43 | | fourierdlem20.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
| 44 | | isof1o 7343 |
. . . . . . . . . . 11
⊢ (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto→𝑇) |
| 45 | | f1of 6848 |
. . . . . . . . . . 11
⊢ (𝑆:(0...𝑁)–1-1-onto→𝑇 → 𝑆:(0...𝑁)⟶𝑇) |
| 46 | 43, 44, 45 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆:(0...𝑁)⟶𝑇) |
| 47 | | fourierdlem20.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) |
| 48 | | elfzofz 13715 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
| 50 | 46, 49 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝐽) ∈ 𝑇) |
| 51 | 42, 50 | sseldd 3984 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) |
| 52 | | fourierdlem20.q0 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) ≤ 𝐴) |
| 53 | 40, 50 | sseldd 3984 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘𝐽) ∈ (𝐴[,]𝐵)) |
| 54 | | iccgelb 13443 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘𝐽) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘𝐽)) |
| 55 | 23, 25, 53, 54 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≤ (𝑆‘𝐽)) |
| 56 | 20, 21, 51, 52, 55 | letrd 11418 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ≤ (𝑆‘𝐽)) |
| 57 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑄‘𝑘) = (𝑄‘0)) |
| 58 | 57 | breq1d 5153 |
. . . . . . . 8
⊢ (𝑘 = 0 → ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ↔ (𝑄‘0) ≤ (𝑆‘𝐽))) |
| 59 | 58 | elrab 3692 |
. . . . . . 7
⊢ (0 ∈
{𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝑆‘𝐽))) |
| 60 | 17, 56, 59 | sylanbrc 583 |
. . . . . 6
⊢ (𝜑 → 0 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
| 61 | 60 | ne0d 4342 |
. . . . 5
⊢ (𝜑 → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅) |
| 62 | 13 | nnred 12281 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 63 | 2 | sseli 3979 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} → 𝑗 ∈ (0..^𝑀)) |
| 64 | | elfzo0le 13743 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ≤ 𝑀) |
| 65 | 63, 64 | syl 17 |
. . . . . . . 8
⊢ (𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} → 𝑗 ≤ 𝑀) |
| 66 | 65 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) → 𝑗 ≤ 𝑀) |
| 67 | 66 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑀) |
| 68 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑥 = 𝑀 → (𝑗 ≤ 𝑥 ↔ 𝑗 ≤ 𝑀)) |
| 69 | 68 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥 ↔ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑀)) |
| 70 | 69 | rspcev 3622 |
. . . . . 6
⊢ ((𝑀 ∈ ℝ ∧
∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑀) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) |
| 71 | 62, 67, 70 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) |
| 72 | | suprzcl 12698 |
. . . . 5
⊢ (({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℤ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
| 73 | 7, 61, 71, 72 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
| 74 | 2, 73 | sselid 3981 |
. . 3
⊢ (𝜑 → sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) ∈ (0..^𝑀)) |
| 75 | 1, 74 | eqeltrid 2845 |
. 2
⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| 76 | 3, 75 | sselid 3981 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 77 | 18, 76 | ffvelcdmd 7105 |
. . . 4
⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ) |
| 78 | 77 | rexrd 11311 |
. . 3
⊢ (𝜑 → (𝑄‘𝐼) ∈
ℝ*) |
| 79 | | fzofzp1 13803 |
. . . . . 6
⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) |
| 80 | 75, 79 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 81 | 18, 80 | ffvelcdmd 7105 |
. . . 4
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 82 | 81 | rexrd 11311 |
. . 3
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 83 | 1, 73 | eqeltrid 2845 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
| 84 | | nfrab1 3457 |
. . . . . . . 8
⊢
Ⅎ𝑘{𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} |
| 85 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘ℝ |
| 86 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘
< |
| 87 | 84, 85, 86 | nfsup 9491 |
. . . . . . 7
⊢
Ⅎ𝑘sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < ) |
| 88 | 1, 87 | nfcxfr 2903 |
. . . . . 6
⊢
Ⅎ𝑘𝐼 |
| 89 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑘(0..^𝑀) |
| 90 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑄 |
| 91 | 90, 88 | nffv 6916 |
. . . . . . 7
⊢
Ⅎ𝑘(𝑄‘𝐼) |
| 92 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑘
≤ |
| 93 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑘(𝑆‘𝐽) |
| 94 | 91, 92, 93 | nfbr 5190 |
. . . . . 6
⊢
Ⅎ𝑘(𝑄‘𝐼) ≤ (𝑆‘𝐽) |
| 95 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑘 = 𝐼 → (𝑄‘𝑘) = (𝑄‘𝐼)) |
| 96 | 95 | breq1d 5153 |
. . . . . 6
⊢ (𝑘 = 𝐼 → ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ↔ (𝑄‘𝐼) ≤ (𝑆‘𝐽))) |
| 97 | 88, 89, 94, 96 | elrabf 3688 |
. . . . 5
⊢ (𝐼 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ↔ (𝐼 ∈ (0..^𝑀) ∧ (𝑄‘𝐼) ≤ (𝑆‘𝐽))) |
| 98 | 83, 97 | sylib 218 |
. . . 4
⊢ (𝜑 → (𝐼 ∈ (0..^𝑀) ∧ (𝑄‘𝐼) ≤ (𝑆‘𝐽))) |
| 99 | 98 | simprd 495 |
. . 3
⊢ (𝜑 → (𝑄‘𝐼) ≤ (𝑆‘𝐽)) |
| 100 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) |
| 101 | 82 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈
ℝ*) |
| 102 | | iccssxr 13470 |
. . . . . . . . . 10
⊢ (𝐴[,]𝐵) ⊆
ℝ* |
| 103 | 40, 102 | sstrdi 3996 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆
ℝ*) |
| 104 | | fzofzp1 13803 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁)) |
| 105 | 47, 104 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 + 1) ∈ (0...𝑁)) |
| 106 | 46, 105 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ 𝑇) |
| 107 | 103, 106 | sseldd 3984 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈
ℝ*) |
| 108 | 107 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → (𝑆‘(𝐽 + 1)) ∈
ℝ*) |
| 109 | | xrltnle 11328 |
. . . . . . 7
⊢ (((𝑄‘(𝐼 + 1)) ∈ ℝ* ∧
(𝑆‘(𝐽 + 1)) ∈ ℝ*) →
((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ↔ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1)))) |
| 110 | 101, 108,
109 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ↔ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1)))) |
| 111 | 100, 110 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) |
| 112 | | fzssz 13566 |
. . . . . 6
⊢
(0...𝑁) ⊆
ℤ |
| 113 | | f1ofo 6855 |
. . . . . . . . . 10
⊢ (𝑆:(0...𝑁)–1-1-onto→𝑇 → 𝑆:(0...𝑁)–onto→𝑇) |
| 114 | 43, 44, 113 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆:(0...𝑁)–onto→𝑇) |
| 115 | 114 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝑆:(0...𝑁)–onto→𝑇) |
| 116 | | ffun 6739 |
. . . . . . . . . . . . . 14
⊢ (𝑄:(0...𝑀)⟶ℝ → Fun 𝑄) |
| 117 | 18, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝑄) |
| 118 | 18 | fdmd 6746 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝑄 = (0...𝑀)) |
| 119 | 118 | eqcomd 2743 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0...𝑀) = dom 𝑄) |
| 120 | 80, 119 | eleqtrd 2843 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐼 + 1) ∈ dom 𝑄) |
| 121 | | fvelrn 7096 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑄 ∧ (𝐼 + 1) ∈ dom 𝑄) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄) |
| 122 | 117, 120,
121 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄) |
| 123 | 122 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ran 𝑄) |
| 124 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐴 ∈
ℝ*) |
| 125 | 25 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐵 ∈
ℝ*) |
| 126 | 81 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 127 | 41, 53 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) |
| 128 | 4 | sseli 3979 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ (0...𝑀) → 𝐼 ∈ ℤ) |
| 129 | | zre 12617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ ℤ → 𝐼 ∈
ℝ) |
| 130 | 76, 128, 129 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐼 ∈ ℝ) |
| 131 | 130 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → 𝐼 ∈ ℝ) |
| 132 | 131 | ltp1d 12198 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → 𝐼 < (𝐼 + 1)) |
| 133 | 132 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → 𝐼 < (𝐼 + 1)) |
| 134 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 135 | 127 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → (𝑆‘𝐽) ∈ ℝ) |
| 136 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
| 137 | 134, 135,
136 | nltled 11411 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) |
| 138 | 130 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → 𝐼 ∈ ℝ) |
| 139 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → 1 ∈ ℝ) |
| 140 | 138, 139 | readdcld 11290 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ∈ ℝ) |
| 141 | | elfzoelz 13699 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ) |
| 142 | 141 | zred 12722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ) |
| 143 | 142 | ssriv 3987 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(0..^𝑀) ⊆
ℝ |
| 144 | 2, 143 | sstri 3993 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℝ |
| 145 | 144 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℝ) |
| 146 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅) |
| 147 | 71 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) |
| 148 | 81 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 149 | 127 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘𝐽) ∈ ℝ) |
| 150 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → 𝐵 ∈ ℝ) |
| 151 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) |
| 152 | 42, 106 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
| 153 | 152 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
| 154 | | elfzoelz 13699 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ) |
| 155 | | zre 12617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐽 ∈ ℤ → 𝐽 ∈
ℝ) |
| 156 | 47, 154, 155 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 157 | 156 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐽 < (𝐽 + 1)) |
| 158 | | isorel 7346 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝐽 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝐽 < (𝐽 + 1) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) |
| 159 | 43, 49, 105, 158 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐽 < (𝐽 + 1) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) |
| 160 | 157, 159 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
| 161 | 160 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
| 162 | 40, 106 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ (𝐴[,]𝐵)) |
| 163 | | iccleub 13442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑆‘(𝐽 + 1)) ∈ (𝐴[,]𝐵)) → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
| 164 | 23, 25, 162, 163 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
| 165 | 164 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
| 166 | 149, 153,
150, 161, 165 | ltletrd 11421 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑆‘𝐽) < 𝐵) |
| 167 | 148, 149,
150, 151, 166 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝑄‘(𝐼 + 1)) < 𝐵) |
| 168 | 167 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝐼 + 1)) < 𝐵) |
| 169 | 24 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝐵 ∈ ℝ) |
| 170 | 81 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝐼 + 1)) ∈ ℝ) |
| 171 | | fourierdlem20.qm |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝐵 ≤ (𝑄‘𝑀)) |
| 172 | 171 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝐵 ≤ (𝑄‘𝑀)) |
| 173 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝑀 ∈ ℤ) |
| 174 | 80 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0...𝑀)) |
| 175 | | fzval3 13773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑀 ∈ ℤ →
(0...𝑀) = (0..^(𝑀 + 1))) |
| 176 | 14, 175 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (0...𝑀) = (0..^(𝑀 + 1))) |
| 177 | 176 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (0...𝑀) = (0..^(𝑀 + 1))) |
| 178 | 174, 177 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (0..^(𝑀 + 1))) |
| 179 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ¬ (𝐼 + 1) ∈ (0..^𝑀)) |
| 180 | 178, 179 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ((𝐼 + 1) ∈ (0..^(𝑀 + 1)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀))) |
| 181 | | elfzonelfzo 13808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 ∈ ℤ → (((𝐼 + 1) ∈ (0..^(𝑀 + 1)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (𝑀..^(𝑀 + 1)))) |
| 182 | 173, 180,
181 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (𝑀..^(𝑀 + 1))) |
| 183 | | fzval3 13773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = (𝑀..^(𝑀 + 1))) |
| 184 | 14, 183 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → (𝑀...𝑀) = (𝑀..^(𝑀 + 1))) |
| 185 | 184 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → (𝑀..^(𝑀 + 1)) = (𝑀...𝑀)) |
| 186 | 185 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑀..^(𝑀 + 1)) = (𝑀...𝑀)) |
| 187 | 182, 186 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) ∈ (𝑀...𝑀)) |
| 188 | | elfz1eq 13575 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐼 + 1) ∈ (𝑀...𝑀) → (𝐼 + 1) = 𝑀) |
| 189 | 187, 188 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝐼 + 1) = 𝑀) |
| 190 | 189 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝑀 = (𝐼 + 1)) |
| 191 | 190 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → (𝑄‘𝑀) = (𝑄‘(𝐼 + 1))) |
| 192 | 172, 191 | breqtrd 5169 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → 𝐵 ≤ (𝑄‘(𝐼 + 1))) |
| 193 | 169, 170,
192 | lensymd 11412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ¬ (𝑄‘(𝐼 + 1)) < 𝐵) |
| 194 | 193 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) ∧ ¬ (𝐼 + 1) ∈ (0..^𝑀)) → ¬ (𝑄‘(𝐼 + 1)) < 𝐵) |
| 195 | 168, 194 | condan 818 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ∈ (0..^𝑀)) |
| 196 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘
+ |
| 197 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘1 |
| 198 | 88, 196, 197 | nfov 7461 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝐼 + 1) |
| 199 | 90, 198 | nffv 6916 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑘(𝑄‘(𝐼 + 1)) |
| 200 | 199, 92, 93 | nfbr 5190 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑘(𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽) |
| 201 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝐼 + 1) → (𝑄‘𝑘) = (𝑄‘(𝐼 + 1))) |
| 202 | 201 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝐼 + 1) → ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ↔ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽))) |
| 203 | 198, 89, 200, 202 | elrabf 3688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ↔ ((𝐼 + 1) ∈ (0..^𝑀) ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽))) |
| 204 | 195, 151,
203 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) |
| 205 | | suprub 12229 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ⊆ ℝ ∧ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}𝑗 ≤ 𝑥) ∧ (𝐼 + 1) ∈ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < )) |
| 206 | 145, 146,
147, 204, 205 | syl31anc 1375 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ≤ sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) ≤ (𝑆‘𝐽)}, ℝ, < )) |
| 207 | 206, 1 | breqtrrdi 5185 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → (𝐼 + 1) ≤ 𝐼) |
| 208 | 140, 138,
207 | lensymd 11412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → ¬ 𝐼 < (𝐼 + 1)) |
| 209 | 208 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ (𝑄‘(𝐼 + 1)) ≤ (𝑆‘𝐽)) → ¬ 𝐼 < (𝐼 + 1)) |
| 210 | 137, 209 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) ∧ ¬ (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) → ¬ 𝐼 < (𝐼 + 1)) |
| 211 | 133, 210 | condan 818 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ) → (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
| 212 | 81, 211 | mpdan 687 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
| 213 | 21, 127, 81, 55, 212 | lelttrd 11419 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 < (𝑄‘(𝐼 + 1))) |
| 214 | 213 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐴 < (𝑄‘(𝐼 + 1))) |
| 215 | 152 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
| 216 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → 𝐵 ∈ ℝ) |
| 217 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) |
| 218 | 164 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑆‘(𝐽 + 1)) ≤ 𝐵) |
| 219 | 126, 215,
216, 217, 218 | ltletrd 11421 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) < 𝐵) |
| 220 | 124, 125,
126, 214, 219 | eliood 45511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ (𝐴(,)𝐵)) |
| 221 | 123, 220 | elind 4200 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ (ran 𝑄 ∩ (𝐴(,)𝐵))) |
| 222 | | elun2 4183 |
. . . . . . . . . 10
⊢ ((𝑄‘(𝐼 + 1)) ∈ (ran 𝑄 ∩ (𝐴(,)𝐵)) → (𝑄‘(𝐼 + 1)) ∈ ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))) |
| 223 | 221, 222 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))) |
| 224 | 223, 22 | eleqtrrdi 2852 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (𝑄‘(𝐼 + 1)) ∈ 𝑇) |
| 225 | | foelrn 7127 |
. . . . . . . 8
⊢ ((𝑆:(0...𝑁)–onto→𝑇 ∧ (𝑄‘(𝐼 + 1)) ∈ 𝑇) → ∃𝑗 ∈ (0...𝑁)(𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) |
| 226 | 115, 224,
225 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → ∃𝑗 ∈ (0...𝑁)(𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) |
| 227 | 212 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝐽) < (𝑄‘(𝐼 + 1))) |
| 228 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) |
| 229 | 227, 228 | breqtrd 5169 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝐽) < (𝑆‘𝑗)) |
| 230 | 229 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝐽) < (𝑆‘𝑗)) |
| 231 | 43 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
| 232 | 49 | anim1i 615 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) |
| 233 | 232 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) |
| 234 | | isorel 7346 |
. . . . . . . . . . . . 13
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (𝐽 < 𝑗 ↔ (𝑆‘𝐽) < (𝑆‘𝑗))) |
| 235 | 231, 233,
234 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝐽 < 𝑗 ↔ (𝑆‘𝐽) < (𝑆‘𝑗))) |
| 236 | 230, 235 | mpbird 257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝐽 < 𝑗) |
| 237 | 236 | adantllr 719 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝐽 < 𝑗) |
| 238 | | eqcom 2744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) ↔ (𝑆‘𝑗) = (𝑄‘(𝐼 + 1))) |
| 239 | 238 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) → (𝑆‘𝑗) = (𝑄‘(𝐼 + 1))) |
| 240 | 239 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) = (𝑄‘(𝐼 + 1))) |
| 241 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) |
| 242 | 240, 241 | eqbrtrd 5165 |
. . . . . . . . . . . . 13
⊢ (((𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) < (𝑆‘(𝐽 + 1))) |
| 243 | 242 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) < (𝑆‘(𝐽 + 1))) |
| 244 | 243 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑆‘𝑗) < (𝑆‘(𝐽 + 1))) |
| 245 | 43 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
| 246 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → 𝑗 ∈ (0...𝑁)) |
| 247 | 105 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → (𝐽 + 1) ∈ (0...𝑁)) |
| 248 | | isorel 7346 |
. . . . . . . . . . . . 13
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝑗 < (𝐽 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝐽 + 1)))) |
| 249 | 245, 246,
247, 248 | syl12anc 837 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → (𝑗 < (𝐽 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝐽 + 1)))) |
| 250 | 249 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝑗 < (𝐽 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝐽 + 1)))) |
| 251 | 244, 250 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → 𝑗 < (𝐽 + 1)) |
| 252 | 237, 251 | jca 511 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑄‘(𝐼 + 1)) = (𝑆‘𝑗)) → (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
| 253 | 252 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) ∧ 𝑗 ∈ (0...𝑁)) → ((𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) → (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)))) |
| 254 | 253 | reximdva 3168 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → (∃𝑗 ∈ (0...𝑁)(𝑄‘(𝐼 + 1)) = (𝑆‘𝑗) → ∃𝑗 ∈ (0...𝑁)(𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)))) |
| 255 | 226, 254 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → ∃𝑗 ∈ (0...𝑁)(𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
| 256 | | ssrexv 4053 |
. . . . . 6
⊢
((0...𝑁) ⊆
ℤ → (∃𝑗
∈ (0...𝑁)(𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)) → ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)))) |
| 257 | 112, 255,
256 | mpsyl 68 |
. . . . 5
⊢ ((𝜑 ∧ (𝑄‘(𝐼 + 1)) < (𝑆‘(𝐽 + 1))) → ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
| 258 | 111, 257 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
| 259 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝑗 ∈ ℤ) |
| 260 | 47, 154 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 261 | 260 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝐽 ∈ ℤ) |
| 262 | | simprl 771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝐽 < 𝑗) |
| 263 | | simprr 773 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → 𝑗 < (𝐽 + 1)) |
| 264 | | btwnnz 12694 |
. . . . . . . 8
⊢ ((𝐽 ∈ ℤ ∧ 𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1)) → ¬ 𝑗 ∈ ℤ) |
| 265 | 261, 262,
263, 264 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) → ¬ 𝑗 ∈ ℤ) |
| 266 | 259, 265 | pm2.65da 817 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → ¬ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
| 267 | 266 | nrexdv 3149 |
. . . . 5
⊢ (𝜑 → ¬ ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
| 268 | 267 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) → ¬ ∃𝑗 ∈ ℤ (𝐽 < 𝑗 ∧ 𝑗 < (𝐽 + 1))) |
| 269 | 258, 268 | condan 818 |
. . 3
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1))) |
| 270 | | ioossioo 13481 |
. . 3
⊢ ((((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*) ∧
((𝑄‘𝐼) ≤ (𝑆‘𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝐼 + 1)))) → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 271 | 78, 82, 99, 269, 270 | syl22anc 839 |
. 2
⊢ (𝜑 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 272 | | fveq2 6906 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑄‘𝑖) = (𝑄‘𝐼)) |
| 273 | | oveq1 7438 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1)) |
| 274 | 273 | fveq2d 6910 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝐼 + 1))) |
| 275 | 272, 274 | oveq12d 7449 |
. . . 4
⊢ (𝑖 = 𝐼 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) |
| 276 | 275 | sseq2d 4016 |
. . 3
⊢ (𝑖 = 𝐼 → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))))) |
| 277 | 276 | rspcev 3622 |
. 2
⊢ ((𝐼 ∈ (0..^𝑀) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → ∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 278 | 75, 271, 277 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |