MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaa Structured version   Visualization version   GIF version

Theorem elqaa 25766
Description: The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 25760 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.)
Assertion
Ref Expression
elqaa (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
Distinct variable group:   𝐴,𝑓

Proof of Theorem elqaa
Dummy variables 𝑘 𝑚 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaa 25760 . . 3 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
2 zssq 12924 . . . . . 6 ℤ ⊆ ℚ
3 qsscn 12928 . . . . . 6 ℚ ⊆ ℂ
4 plyss 25644 . . . . . 6 ((ℤ ⊆ ℚ ∧ ℚ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℚ))
52, 3, 4mp2an 690 . . . . 5 (Poly‘ℤ) ⊆ (Poly‘ℚ)
6 ssdif 4136 . . . . 5 ((Poly‘ℤ) ⊆ (Poly‘ℚ) → ((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝}))
7 ssrexv 4048 . . . . 5 (((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝}) → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
85, 6, 7mp2b 10 . . . 4 (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
98anim2i 617 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
101, 9sylbi 216 . 2 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
11 simpll 765 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → 𝐴 ∈ ℂ)
12 simplr 767 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
13 simpr 485 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → (𝑓𝐴) = 0)
14 eqid 2732 . . . 4 (coeff‘𝑓) = (coeff‘𝑓)
15 fveq2 6879 . . . . . . . . . 10 (𝑚 = 𝑘 → ((coeff‘𝑓)‘𝑚) = ((coeff‘𝑓)‘𝑘))
1615oveq1d 7409 . . . . . . . . 9 (𝑚 = 𝑘 → (((coeff‘𝑓)‘𝑚) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑗))
1716eleq1d 2818 . . . . . . . 8 (𝑚 = 𝑘 → ((((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ))
1817rabbidv 3440 . . . . . . 7 (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ})
19 oveq2 7402 . . . . . . . . 9 (𝑗 = 𝑛 → (((coeff‘𝑓)‘𝑘) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑛))
2019eleq1d 2818 . . . . . . . 8 (𝑗 = 𝑛 → ((((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ))
2120cbvrabv 3442 . . . . . . 7 {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}
2218, 21eqtrdi 2788 . . . . . 6 (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ})
2322infeq1d 9456 . . . . 5 (𝑚 = 𝑘 → inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
2423cbvmptv 5255 . . . 4 (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )) = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
25 eqid 2732 . . . 4 (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓)) = (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓))
2611, 12, 13, 14, 24, 25elqaalem3 25765 . . 3 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → 𝐴 ∈ 𝔸)
2726r19.29an 3158 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0) → 𝐴 ∈ 𝔸)
2810, 27impbii 208 1 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  {crab 3432  cdif 3942  wss 3945  {csn 4623  cmpt 5225  cfv 6533  (class class class)co 7394  infcinf 9420  cc 11092  cr 11093  0cc0 11094   · cmul 11099   < clt 11232  cn 12196  0cn0 12456  cz 12542  cq 12916  seqcseq 13950  0𝑝c0p 25117  Polycply 25629  coeffccoe 25631  degcdgr 25632  𝔸caa 25758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-inf2 9620  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-pm 8808  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-sup 9421  df-inf 9422  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-n0 12457  df-z 12543  df-uz 12807  df-q 12917  df-rp 12959  df-fz 13469  df-fzo 13612  df-fl 13741  df-mod 13819  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-clim 15416  df-rlim 15417  df-sum 15617  df-0p 25118  df-ply 25633  df-coe 25635  df-dgr 25636  df-aa 25759
This theorem is referenced by:  qaa  25767  dgraalem  41722  dgraaub  41725  aaitgo  41739  aacllem  47560
  Copyright terms: Public domain W3C validator