MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaa Structured version   Visualization version   GIF version

Theorem elqaa 24903
Description: The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 24897 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.)
Assertion
Ref Expression
elqaa (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
Distinct variable group:   𝐴,𝑓

Proof of Theorem elqaa
Dummy variables 𝑘 𝑚 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaa 24897 . . 3 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0))
2 zssq 12347 . . . . . 6 ℤ ⊆ ℚ
3 qsscn 12351 . . . . . 6 ℚ ⊆ ℂ
4 plyss 24781 . . . . . 6 ((ℤ ⊆ ℚ ∧ ℚ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℚ))
52, 3, 4mp2an 690 . . . . 5 (Poly‘ℤ) ⊆ (Poly‘ℚ)
6 ssdif 4114 . . . . 5 ((Poly‘ℤ) ⊆ (Poly‘ℚ) → ((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝}))
7 ssrexv 4032 . . . . 5 (((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝}) → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
85, 6, 7mp2b 10 . . . 4 (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0)
98anim2i 618 . . 3 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓𝐴) = 0) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
101, 9sylbi 219 . 2 (𝐴 ∈ 𝔸 → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
11 simpll 765 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → 𝐴 ∈ ℂ)
12 simplr 767 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
13 simpr 487 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → (𝑓𝐴) = 0)
14 eqid 2819 . . . 4 (coeff‘𝑓) = (coeff‘𝑓)
15 fveq2 6663 . . . . . . . . . 10 (𝑚 = 𝑘 → ((coeff‘𝑓)‘𝑚) = ((coeff‘𝑓)‘𝑘))
1615oveq1d 7163 . . . . . . . . 9 (𝑚 = 𝑘 → (((coeff‘𝑓)‘𝑚) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑗))
1716eleq1d 2895 . . . . . . . 8 (𝑚 = 𝑘 → ((((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ))
1817rabbidv 3479 . . . . . . 7 (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ})
19 oveq2 7156 . . . . . . . . 9 (𝑗 = 𝑛 → (((coeff‘𝑓)‘𝑘) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑛))
2019eleq1d 2895 . . . . . . . 8 (𝑗 = 𝑛 → ((((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ))
2120cbvrabv 3490 . . . . . . 7 {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}
2218, 21syl6eq 2870 . . . . . 6 (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ})
2322infeq1d 8933 . . . . 5 (𝑚 = 𝑘 → inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
2423cbvmptv 5160 . . . 4 (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )) = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
25 eqid 2819 . . . 4 (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓)) = (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓))
2611, 12, 13, 14, 24, 25elqaalem3 24902 . . 3 (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓𝐴) = 0) → 𝐴 ∈ 𝔸)
2726r19.29an 3286 . 2 ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0) → 𝐴 ∈ 𝔸)
2810, 27impbii 211 1 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wrex 3137  {crab 3140  cdif 3931  wss 3934  {csn 4559  cmpt 5137  cfv 6348  (class class class)co 7148  infcinf 8897  cc 10527  cr 10528  0cc0 10529   · cmul 10534   < clt 10667  cn 11630  0cn0 11889  cz 11973  cq 12340  seqcseq 13361  0𝑝c0p 24262  Polycply 24766  coeffccoe 24768  degcdgr 24769  𝔸caa 24895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-0p 24263  df-ply 24770  df-coe 24772  df-dgr 24773  df-aa 24896
This theorem is referenced by:  qaa  24904  dgraalem  39730  dgraaub  39733  aaitgo  39747  aacllem  44887
  Copyright terms: Public domain W3C validator