Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elqaa | Structured version Visualization version GIF version |
Description: The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 25457 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
elqaa | ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elaa 25457 | . . 3 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
2 | zssq 12678 | . . . . . 6 ⊢ ℤ ⊆ ℚ | |
3 | qsscn 12682 | . . . . . 6 ⊢ ℚ ⊆ ℂ | |
4 | plyss 25341 | . . . . . 6 ⊢ ((ℤ ⊆ ℚ ∧ ℚ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℚ)) | |
5 | 2, 3, 4 | mp2an 688 | . . . . 5 ⊢ (Poly‘ℤ) ⊆ (Poly‘ℚ) |
6 | ssdif 4078 | . . . . 5 ⊢ ((Poly‘ℤ) ⊆ (Poly‘ℚ) → ((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝})) | |
7 | ssrexv 3992 | . . . . 5 ⊢ (((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝}) → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
8 | 5, 6, 7 | mp2b 10 | . . . 4 ⊢ (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0) |
9 | 8 | anim2i 616 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
10 | 1, 9 | sylbi 216 | . 2 ⊢ (𝐴 ∈ 𝔸 → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
11 | simpll 763 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → 𝐴 ∈ ℂ) | |
12 | simplr 765 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) | |
13 | simpr 484 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → (𝑓‘𝐴) = 0) | |
14 | eqid 2739 | . . . 4 ⊢ (coeff‘𝑓) = (coeff‘𝑓) | |
15 | fveq2 6768 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → ((coeff‘𝑓)‘𝑚) = ((coeff‘𝑓)‘𝑘)) | |
16 | 15 | oveq1d 7283 | . . . . . . . . 9 ⊢ (𝑚 = 𝑘 → (((coeff‘𝑓)‘𝑚) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑗)) |
17 | 16 | eleq1d 2824 | . . . . . . . 8 ⊢ (𝑚 = 𝑘 → ((((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ)) |
18 | 17 | rabbidv 3412 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ}) |
19 | oveq2 7276 | . . . . . . . . 9 ⊢ (𝑗 = 𝑛 → (((coeff‘𝑓)‘𝑘) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑛)) | |
20 | 19 | eleq1d 2824 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → ((((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ)) |
21 | 20 | cbvrabv 3424 | . . . . . . 7 ⊢ {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ} |
22 | 18, 21 | eqtrdi 2795 | . . . . . 6 ⊢ (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}) |
23 | 22 | infeq1d 9197 | . . . . 5 ⊢ (𝑚 = 𝑘 → inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
24 | 23 | cbvmptv 5191 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )) = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
25 | eqid 2739 | . . . 4 ⊢ (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓)) = (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓)) | |
26 | 11, 12, 13, 14, 24, 25 | elqaalem3 25462 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → 𝐴 ∈ 𝔸) |
27 | 26 | r19.29an 3218 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → 𝐴 ∈ 𝔸) |
28 | 10, 27 | impbii 208 | 1 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 {crab 3069 ∖ cdif 3888 ⊆ wss 3891 {csn 4566 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 infcinf 9161 ℂcc 10853 ℝcr 10854 0cc0 10855 · cmul 10860 < clt 10993 ℕcn 11956 ℕ0cn0 12216 ℤcz 12302 ℚcq 12670 seqcseq 13702 0𝑝c0p 24814 Polycply 25326 coeffccoe 25328 degcdgr 25329 𝔸caa 25455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-fz 13222 df-fzo 13365 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-rlim 15179 df-sum 15379 df-0p 24815 df-ply 25330 df-coe 25332 df-dgr 25333 df-aa 25456 |
This theorem is referenced by: qaa 25464 dgraalem 40950 dgraaub 40953 aaitgo 40967 aacllem 46457 |
Copyright terms: Public domain | W3C validator |