| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoidinvlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for grpoidinv 30437. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| grpoidinvlem4 | ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . . . . . 6 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐺 ∈ GrpOp) | |
| 2 | simplr 768 | . . . . . 6 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 3 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) | |
| 4 | grpfo.1 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 5 | 4 | grpoass 30432 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴))) |
| 6 | 1, 2, 3, 2, 5 | syl13anc 1374 | . . . . 5 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴))) |
| 7 | oveq2 7395 | . . . . 5 ⊢ ((𝑦𝐺𝐴) = 𝑈 → (𝐴𝐺(𝑦𝐺𝐴)) = (𝐴𝐺𝑈)) | |
| 8 | 6, 7 | sylan9eq 2784 | . . . 4 ⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺𝑈)) |
| 9 | oveq1 7394 | . . . 4 ⊢ ((𝐴𝐺𝑦) = 𝑈 → ((𝐴𝐺𝑦)𝐺𝐴) = (𝑈𝐺𝐴)) | |
| 10 | 8, 9 | sylan9req 2785 | . . 3 ⊢ (((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) ∧ (𝐴𝐺𝑦) = 𝑈) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
| 11 | 10 | anasss 466 | . 2 ⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
| 12 | 11 | r19.29an 3137 | 1 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ran crn 5639 (class class class)co 7387 GrpOpcgr 30418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-ov 7390 df-grpo 30422 |
| This theorem is referenced by: grpoidinv 30437 grpoideu 30438 |
| Copyright terms: Public domain | W3C validator |