![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoidinvlem4 | Structured version Visualization version GIF version |
Description: Lemma for grpoidinv 30540. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
grpoidinvlem4 | ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 766 | . . . . . 6 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐺 ∈ GrpOp) | |
2 | simplr 768 | . . . . . 6 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
3 | simpr 484 | . . . . . 6 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) | |
4 | grpfo.1 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
5 | 4 | grpoass 30535 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴))) |
6 | 1, 2, 3, 2, 5 | syl13anc 1372 | . . . . 5 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴))) |
7 | oveq2 7456 | . . . . 5 ⊢ ((𝑦𝐺𝐴) = 𝑈 → (𝐴𝐺(𝑦𝐺𝐴)) = (𝐴𝐺𝑈)) | |
8 | 6, 7 | sylan9eq 2800 | . . . 4 ⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺𝑈)) |
9 | oveq1 7455 | . . . 4 ⊢ ((𝐴𝐺𝑦) = 𝑈 → ((𝐴𝐺𝑦)𝐺𝐴) = (𝑈𝐺𝐴)) | |
10 | 8, 9 | sylan9req 2801 | . . 3 ⊢ (((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) ∧ (𝐴𝐺𝑦) = 𝑈) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
11 | 10 | anasss 466 | . 2 ⊢ ((((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) ∧ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
12 | 11 | r19.29an 3164 | 1 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ran crn 5701 (class class class)co 7448 GrpOpcgr 30521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-grpo 30525 |
This theorem is referenced by: grpoidinv 30540 grpoideu 30541 |
Copyright terms: Public domain | W3C validator |