MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem4 Structured version   Visualization version   GIF version

Theorem grpoidinvlem4 28869
Description: Lemma for grpoidinv 28870. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem4 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑋   𝑦,𝑈

Proof of Theorem grpoidinvlem4
StepHypRef Expression
1 simpll 764 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐺 ∈ GrpOp)
2 simplr 766 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐴𝑋)
3 simpr 485 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
4 grpfo.1 . . . . . . 7 𝑋 = ran 𝐺
54grpoass 28865 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑦𝑋𝐴𝑋)) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴)))
61, 2, 3, 2, 5syl13anc 1371 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴)))
7 oveq2 7283 . . . . 5 ((𝑦𝐺𝐴) = 𝑈 → (𝐴𝐺(𝑦𝐺𝐴)) = (𝐴𝐺𝑈))
86, 7sylan9eq 2798 . . . 4 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺𝑈))
9 oveq1 7282 . . . 4 ((𝐴𝐺𝑦) = 𝑈 → ((𝐴𝐺𝑦)𝐺𝐴) = (𝑈𝐺𝐴))
108, 9sylan9req 2799 . . 3 (((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) ∧ (𝐴𝐺𝑦) = 𝑈) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
1110anasss 467 . 2 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
1211r19.29an 3217 1 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  ran crn 5590  (class class class)co 7275  GrpOpcgr 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-grpo 28855
This theorem is referenced by:  grpoidinv  28870  grpoideu  28871
  Copyright terms: Public domain W3C validator