MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem4 Structured version   Visualization version   GIF version

Theorem grpoidinvlem4 30539
Description: Lemma for grpoidinv 30540. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem4 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑋   𝑦,𝑈

Proof of Theorem grpoidinvlem4
StepHypRef Expression
1 simpll 766 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐺 ∈ GrpOp)
2 simplr 768 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐴𝑋)
3 simpr 484 . . . . . 6 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
4 grpfo.1 . . . . . . 7 𝑋 = ran 𝐺
54grpoass 30535 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑦𝑋𝐴𝑋)) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴)))
61, 2, 3, 2, 5syl13anc 1372 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺(𝑦𝐺𝐴)))
7 oveq2 7456 . . . . 5 ((𝑦𝐺𝐴) = 𝑈 → (𝐴𝐺(𝑦𝐺𝐴)) = (𝐴𝐺𝑈))
86, 7sylan9eq 2800 . . . 4 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) → ((𝐴𝐺𝑦)𝐺𝐴) = (𝐴𝐺𝑈))
9 oveq1 7455 . . . 4 ((𝐴𝐺𝑦) = 𝑈 → ((𝐴𝐺𝑦)𝐺𝐴) = (𝑈𝐺𝐴))
108, 9sylan9req 2801 . . 3 (((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ (𝑦𝐺𝐴) = 𝑈) ∧ (𝐴𝐺𝑦) = 𝑈) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
1110anasss 466 . 2 ((((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) ∧ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
1211r19.29an 3164 1 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  ran crn 5701  (class class class)co 7448  GrpOpcgr 30521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-grpo 30525
This theorem is referenced by:  grpoidinv  30540  grpoideu  30541
  Copyright terms: Public domain W3C validator