Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldiophss | Structured version Visualization version GIF version |
Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
eldiophss | ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldioph3b 40624 | . 2 ⊢ (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)})) | |
2 | simpr 486 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) | |
3 | vex 3441 | . . . . . . . 8 ⊢ 𝑑 ∈ V | |
4 | eqeq1 2740 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑑 → (𝑏 = (𝑐 ↾ (1...𝐵)) ↔ 𝑑 = (𝑐 ↾ (1...𝐵)))) | |
5 | 4 | anbi1d 631 | . . . . . . . . 9 ⊢ (𝑏 = 𝑑 → ((𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ (𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
6 | 5 | rexbidv 3172 | . . . . . . . 8 ⊢ (𝑏 = 𝑑 → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
7 | 3, 6 | elab 3614 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)) |
8 | simpr 486 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 = (𝑐 ↾ (1...𝐵))) | |
9 | elfznn 13331 | . . . . . . . . . . . . . 14 ⊢ (𝑎 ∈ (1...𝐵) → 𝑎 ∈ ℕ) | |
10 | 9 | ssriv 3930 | . . . . . . . . . . . . 13 ⊢ (1...𝐵) ⊆ ℕ |
11 | elmapssres 8686 | . . . . . . . . . . . . 13 ⊢ ((𝑐 ∈ (ℕ0 ↑m ℕ) ∧ (1...𝐵) ⊆ ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) | |
12 | 10, 11 | mpan2 689 | . . . . . . . . . . . 12 ⊢ (𝑐 ∈ (ℕ0 ↑m ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
13 | 12 | ad2antlr 725 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
14 | 8, 13 | eqeltrd 2837 | . . . . . . . . . 10 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵))) |
15 | 14 | ex 414 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → (𝑑 = (𝑐 ↾ (1...𝐵)) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
16 | 15 | adantrd 493 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → ((𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
17 | 16 | rexlimdva 3149 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
18 | 7, 17 | syl5bi 242 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
19 | 18 | ssrdv 3932 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
20 | 19 | adantr 482 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
21 | 2, 20 | eqsstrd 3964 | . . 3 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
22 | 21 | r19.29an 3152 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
23 | 1, 22 | sylbi 216 | 1 ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {cab 2713 ∃wrex 3071 ⊆ wss 3892 ↾ cres 5602 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 0cc0 10917 1c1 10918 ℕcn 12019 ℕ0cn0 12279 ...cfz 13285 mzPolycmzp 40581 Diophcdioph 40614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-hash 14091 df-mzpcl 40582 df-mzp 40583 df-dioph 40615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |