Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophss Structured version   Visualization version   GIF version

Theorem eldiophss 42761
Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
eldiophss (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0m (1...𝐵)))

Proof of Theorem eldiophss
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldioph3b 42752 . 2 (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}))
2 simpr 484 . . . 4 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)})
3 vex 3481 . . . . . . . 8 𝑑 ∈ V
4 eqeq1 2738 . . . . . . . . . 10 (𝑏 = 𝑑 → (𝑏 = (𝑐 ↾ (1...𝐵)) ↔ 𝑑 = (𝑐 ↾ (1...𝐵))))
54anbi1d 631 . . . . . . . . 9 (𝑏 = 𝑑 → ((𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) ↔ (𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)))
65rexbidv 3176 . . . . . . . 8 (𝑏 = 𝑑 → (∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) ↔ ∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)))
73, 6elab 3680 . . . . . . 7 (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ↔ ∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0))
8 simpr 484 . . . . . . . . . . 11 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 = (𝑐 ↾ (1...𝐵)))
9 elfznn 13589 . . . . . . . . . . . . . 14 (𝑎 ∈ (1...𝐵) → 𝑎 ∈ ℕ)
109ssriv 3998 . . . . . . . . . . . . 13 (1...𝐵) ⊆ ℕ
11 elmapssres 8905 . . . . . . . . . . . . 13 ((𝑐 ∈ (ℕ0m ℕ) ∧ (1...𝐵) ⊆ ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
1210, 11mpan2 691 . . . . . . . . . . . 12 (𝑐 ∈ (ℕ0m ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
1312ad2antlr 727 . . . . . . . . . . 11 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
148, 13eqeltrd 2838 . . . . . . . . . 10 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 ∈ (ℕ0m (1...𝐵)))
1514ex 412 . . . . . . . . 9 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) → (𝑑 = (𝑐 ↾ (1...𝐵)) → 𝑑 ∈ (ℕ0m (1...𝐵))))
1615adantrd 491 . . . . . . . 8 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) → ((𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) → 𝑑 ∈ (ℕ0m (1...𝐵))))
1716rexlimdva 3152 . . . . . . 7 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → (∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) → 𝑑 ∈ (ℕ0m (1...𝐵))))
187, 17biimtrid 242 . . . . . 6 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} → 𝑑 ∈ (ℕ0m (1...𝐵))))
1918ssrdv 4000 . . . . 5 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ⊆ (ℕ0m (1...𝐵)))
2019adantr 480 . . . 4 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ⊆ (ℕ0m (1...𝐵)))
212, 20eqsstrd 4033 . . 3 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
2221r19.29an 3155 . 2 ((𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
231, 22sylbi 217 1 (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  {cab 2711  wrex 3067  wss 3962  cres 5690  cfv 6562  (class class class)co 7430  m cmap 8864  0cc0 11152  1c1 11153  cn 12263  0cn0 12523  ...cfz 13543  mzPolycmzp 42709  Diophcdioph 42742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366  df-mzpcl 42710  df-mzp 42711  df-dioph 42743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator