Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophss Structured version   Visualization version   GIF version

Theorem eldiophss 42767
Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
eldiophss (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0m (1...𝐵)))

Proof of Theorem eldiophss
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldioph3b 42758 . 2 (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}))
2 simpr 484 . . . 4 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)})
3 vex 3440 . . . . . . . 8 𝑑 ∈ V
4 eqeq1 2733 . . . . . . . . . 10 (𝑏 = 𝑑 → (𝑏 = (𝑐 ↾ (1...𝐵)) ↔ 𝑑 = (𝑐 ↾ (1...𝐵))))
54anbi1d 631 . . . . . . . . 9 (𝑏 = 𝑑 → ((𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) ↔ (𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)))
65rexbidv 3153 . . . . . . . 8 (𝑏 = 𝑑 → (∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) ↔ ∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)))
73, 6elab 3635 . . . . . . 7 (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ↔ ∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0))
8 simpr 484 . . . . . . . . . . 11 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 = (𝑐 ↾ (1...𝐵)))
9 elfznn 13456 . . . . . . . . . . . . . 14 (𝑎 ∈ (1...𝐵) → 𝑎 ∈ ℕ)
109ssriv 3939 . . . . . . . . . . . . 13 (1...𝐵) ⊆ ℕ
11 elmapssres 8794 . . . . . . . . . . . . 13 ((𝑐 ∈ (ℕ0m ℕ) ∧ (1...𝐵) ⊆ ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
1210, 11mpan2 691 . . . . . . . . . . . 12 (𝑐 ∈ (ℕ0m ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
1312ad2antlr 727 . . . . . . . . . . 11 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
148, 13eqeltrd 2828 . . . . . . . . . 10 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 ∈ (ℕ0m (1...𝐵)))
1514ex 412 . . . . . . . . 9 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) → (𝑑 = (𝑐 ↾ (1...𝐵)) → 𝑑 ∈ (ℕ0m (1...𝐵))))
1615adantrd 491 . . . . . . . 8 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) → ((𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) → 𝑑 ∈ (ℕ0m (1...𝐵))))
1716rexlimdva 3130 . . . . . . 7 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → (∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) → 𝑑 ∈ (ℕ0m (1...𝐵))))
187, 17biimtrid 242 . . . . . 6 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} → 𝑑 ∈ (ℕ0m (1...𝐵))))
1918ssrdv 3941 . . . . 5 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ⊆ (ℕ0m (1...𝐵)))
2019adantr 480 . . . 4 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ⊆ (ℕ0m (1...𝐵)))
212, 20eqsstrd 3970 . . 3 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
2221r19.29an 3133 . 2 ((𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
231, 22sylbi 217 1 (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  wss 3903  cres 5621  cfv 6482  (class class class)co 7349  m cmap 8753  0cc0 11009  1c1 11010  cn 12128  0cn0 12384  ...cfz 13410  mzPolycmzp 42715  Diophcdioph 42748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-mzpcl 42716  df-mzp 42717  df-dioph 42749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator