Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldiophss Structured version   Visualization version   GIF version

Theorem eldiophss 42866
Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Assertion
Ref Expression
eldiophss (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0m (1...𝐵)))

Proof of Theorem eldiophss
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldioph3b 42857 . 2 (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}))
2 simpr 484 . . . 4 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)})
3 vex 3440 . . . . . . . 8 𝑑 ∈ V
4 eqeq1 2735 . . . . . . . . . 10 (𝑏 = 𝑑 → (𝑏 = (𝑐 ↾ (1...𝐵)) ↔ 𝑑 = (𝑐 ↾ (1...𝐵))))
54anbi1d 631 . . . . . . . . 9 (𝑏 = 𝑑 → ((𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) ↔ (𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)))
65rexbidv 3156 . . . . . . . 8 (𝑏 = 𝑑 → (∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) ↔ ∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)))
73, 6elab 3630 . . . . . . 7 (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ↔ ∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0))
8 simpr 484 . . . . . . . . . . 11 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 = (𝑐 ↾ (1...𝐵)))
9 elfznn 13453 . . . . . . . . . . . . . 14 (𝑎 ∈ (1...𝐵) → 𝑎 ∈ ℕ)
109ssriv 3933 . . . . . . . . . . . . 13 (1...𝐵) ⊆ ℕ
11 elmapssres 8791 . . . . . . . . . . . . 13 ((𝑐 ∈ (ℕ0m ℕ) ∧ (1...𝐵) ⊆ ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
1210, 11mpan2 691 . . . . . . . . . . . 12 (𝑐 ∈ (ℕ0m ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
1312ad2antlr 727 . . . . . . . . . . 11 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0m (1...𝐵)))
148, 13eqeltrd 2831 . . . . . . . . . 10 ((((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 ∈ (ℕ0m (1...𝐵)))
1514ex 412 . . . . . . . . 9 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) → (𝑑 = (𝑐 ↾ (1...𝐵)) → 𝑑 ∈ (ℕ0m (1...𝐵))))
1615adantrd 491 . . . . . . . 8 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0m ℕ)) → ((𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) → 𝑑 ∈ (ℕ0m (1...𝐵))))
1716rexlimdva 3133 . . . . . . 7 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → (∃𝑐 ∈ (ℕ0m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0) → 𝑑 ∈ (ℕ0m (1...𝐵))))
187, 17biimtrid 242 . . . . . 6 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} → 𝑑 ∈ (ℕ0m (1...𝐵))))
1918ssrdv 3935 . . . . 5 ((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ⊆ (ℕ0m (1...𝐵)))
2019adantr 480 . . . 4 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)} ⊆ (ℕ0m (1...𝐵)))
212, 20eqsstrd 3964 . . 3 (((𝐵 ∈ ℕ0𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
2221r19.29an 3136 . 2 ((𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎𝑐) = 0)}) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
231, 22sylbi 217 1 (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0m (1...𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  wss 3897  cres 5616  cfv 6481  (class class class)co 7346  m cmap 8750  0cc0 11006  1c1 11007  cn 12125  0cn0 12381  ...cfz 13407  mzPolycmzp 42814  Diophcdioph 42847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-mzpcl 42815  df-mzp 42816  df-dioph 42848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator