![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldiophss | Structured version Visualization version GIF version |
Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
eldiophss | ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldioph3b 42752 | . 2 ⊢ (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)})) | |
2 | simpr 484 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) | |
3 | vex 3481 | . . . . . . . 8 ⊢ 𝑑 ∈ V | |
4 | eqeq1 2738 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑑 → (𝑏 = (𝑐 ↾ (1...𝐵)) ↔ 𝑑 = (𝑐 ↾ (1...𝐵)))) | |
5 | 4 | anbi1d 631 | . . . . . . . . 9 ⊢ (𝑏 = 𝑑 → ((𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ (𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
6 | 5 | rexbidv 3176 | . . . . . . . 8 ⊢ (𝑏 = 𝑑 → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
7 | 3, 6 | elab 3680 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)) |
8 | simpr 484 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 = (𝑐 ↾ (1...𝐵))) | |
9 | elfznn 13589 | . . . . . . . . . . . . . 14 ⊢ (𝑎 ∈ (1...𝐵) → 𝑎 ∈ ℕ) | |
10 | 9 | ssriv 3998 | . . . . . . . . . . . . 13 ⊢ (1...𝐵) ⊆ ℕ |
11 | elmapssres 8905 | . . . . . . . . . . . . 13 ⊢ ((𝑐 ∈ (ℕ0 ↑m ℕ) ∧ (1...𝐵) ⊆ ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) | |
12 | 10, 11 | mpan2 691 | . . . . . . . . . . . 12 ⊢ (𝑐 ∈ (ℕ0 ↑m ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
13 | 12 | ad2antlr 727 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
14 | 8, 13 | eqeltrd 2838 | . . . . . . . . . 10 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵))) |
15 | 14 | ex 412 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → (𝑑 = (𝑐 ↾ (1...𝐵)) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
16 | 15 | adantrd 491 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → ((𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
17 | 16 | rexlimdva 3152 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
18 | 7, 17 | biimtrid 242 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
19 | 18 | ssrdv 4000 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
20 | 19 | adantr 480 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
21 | 2, 20 | eqsstrd 4033 | . . 3 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
22 | 21 | r19.29an 3155 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
23 | 1, 22 | sylbi 217 | 1 ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {cab 2711 ∃wrex 3067 ⊆ wss 3962 ↾ cres 5690 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 0cc0 11152 1c1 11153 ℕcn 12263 ℕ0cn0 12523 ...cfz 13543 mzPolycmzp 42709 Diophcdioph 42742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-oadd 8508 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-hash 14366 df-mzpcl 42710 df-mzp 42711 df-dioph 42743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |