| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldiophss | Structured version Visualization version GIF version | ||
| Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
| Ref | Expression |
|---|---|
| eldiophss | ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldioph3b 42776 | . 2 ⊢ (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)})) | |
| 2 | simpr 484 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) | |
| 3 | vex 3484 | . . . . . . . 8 ⊢ 𝑑 ∈ V | |
| 4 | eqeq1 2741 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑑 → (𝑏 = (𝑐 ↾ (1...𝐵)) ↔ 𝑑 = (𝑐 ↾ (1...𝐵)))) | |
| 5 | 4 | anbi1d 631 | . . . . . . . . 9 ⊢ (𝑏 = 𝑑 → ((𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ (𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
| 6 | 5 | rexbidv 3179 | . . . . . . . 8 ⊢ (𝑏 = 𝑑 → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
| 7 | 3, 6 | elab 3679 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)) |
| 8 | simpr 484 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 = (𝑐 ↾ (1...𝐵))) | |
| 9 | elfznn 13593 | . . . . . . . . . . . . . 14 ⊢ (𝑎 ∈ (1...𝐵) → 𝑎 ∈ ℕ) | |
| 10 | 9 | ssriv 3987 | . . . . . . . . . . . . 13 ⊢ (1...𝐵) ⊆ ℕ |
| 11 | elmapssres 8907 | . . . . . . . . . . . . 13 ⊢ ((𝑐 ∈ (ℕ0 ↑m ℕ) ∧ (1...𝐵) ⊆ ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) | |
| 12 | 10, 11 | mpan2 691 | . . . . . . . . . . . 12 ⊢ (𝑐 ∈ (ℕ0 ↑m ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
| 13 | 12 | ad2antlr 727 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
| 14 | 8, 13 | eqeltrd 2841 | . . . . . . . . . 10 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵))) |
| 15 | 14 | ex 412 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → (𝑑 = (𝑐 ↾ (1...𝐵)) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
| 16 | 15 | adantrd 491 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → ((𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
| 17 | 16 | rexlimdva 3155 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
| 18 | 7, 17 | biimtrid 242 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
| 19 | 18 | ssrdv 3989 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
| 21 | 2, 20 | eqsstrd 4018 | . . 3 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
| 22 | 21 | r19.29an 3158 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
| 23 | 1, 22 | sylbi 217 | 1 ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 ⊆ wss 3951 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 0cc0 11155 1c1 11156 ℕcn 12266 ℕ0cn0 12526 ...cfz 13547 mzPolycmzp 42733 Diophcdioph 42766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 df-mzpcl 42734 df-mzp 42735 df-dioph 42767 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |