Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldiophss | Structured version Visualization version GIF version |
Description: Diophantine sets are sets of tuples of nonnegative integers. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
eldiophss | ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldioph3b 40124 | . 2 ⊢ (𝐴 ∈ (Dioph‘𝐵) ↔ (𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)})) | |
2 | simpr 488 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) | |
3 | vex 3413 | . . . . . . . 8 ⊢ 𝑑 ∈ V | |
4 | eqeq1 2762 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑑 → (𝑏 = (𝑐 ↾ (1...𝐵)) ↔ 𝑑 = (𝑐 ↾ (1...𝐵)))) | |
5 | 4 | anbi1d 632 | . . . . . . . . 9 ⊢ (𝑏 = 𝑑 → ((𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ (𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
6 | 5 | rexbidv 3221 | . . . . . . . 8 ⊢ (𝑏 = 𝑑 → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0))) |
7 | 3, 6 | elab 3590 | . . . . . . 7 ⊢ (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ↔ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)) |
8 | simpr 488 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 = (𝑐 ↾ (1...𝐵))) | |
9 | elfznn 12998 | . . . . . . . . . . . . . 14 ⊢ (𝑎 ∈ (1...𝐵) → 𝑎 ∈ ℕ) | |
10 | 9 | ssriv 3898 | . . . . . . . . . . . . 13 ⊢ (1...𝐵) ⊆ ℕ |
11 | elmapssres 8462 | . . . . . . . . . . . . 13 ⊢ ((𝑐 ∈ (ℕ0 ↑m ℕ) ∧ (1...𝐵) ⊆ ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) | |
12 | 10, 11 | mpan2 690 | . . . . . . . . . . . 12 ⊢ (𝑐 ∈ (ℕ0 ↑m ℕ) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
13 | 12 | ad2antlr 726 | . . . . . . . . . . 11 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → (𝑐 ↾ (1...𝐵)) ∈ (ℕ0 ↑m (1...𝐵))) |
14 | 8, 13 | eqeltrd 2852 | . . . . . . . . . 10 ⊢ ((((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) ∧ 𝑑 = (𝑐 ↾ (1...𝐵))) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵))) |
15 | 14 | ex 416 | . . . . . . . . 9 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → (𝑑 = (𝑐 ↾ (1...𝐵)) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
16 | 15 | adantrd 495 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝑐 ∈ (ℕ0 ↑m ℕ)) → ((𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
17 | 16 | rexlimdva 3208 | . . . . . . 7 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑑 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0) → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
18 | 7, 17 | syl5bi 245 | . . . . . 6 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → (𝑑 ∈ {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} → 𝑑 ∈ (ℕ0 ↑m (1...𝐵)))) |
19 | 18 | ssrdv 3900 | . . . . 5 ⊢ ((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
20 | 19 | adantr 484 | . . . 4 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)} ⊆ (ℕ0 ↑m (1...𝐵))) |
21 | 2, 20 | eqsstrd 3932 | . . 3 ⊢ (((𝐵 ∈ ℕ0 ∧ 𝑎 ∈ (mzPoly‘ℕ)) ∧ 𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
22 | 21 | r19.29an 3212 | . 2 ⊢ ((𝐵 ∈ ℕ0 ∧ ∃𝑎 ∈ (mzPoly‘ℕ)𝐴 = {𝑏 ∣ ∃𝑐 ∈ (ℕ0 ↑m ℕ)(𝑏 = (𝑐 ↾ (1...𝐵)) ∧ (𝑎‘𝑐) = 0)}) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
23 | 1, 22 | sylbi 220 | 1 ⊢ (𝐴 ∈ (Dioph‘𝐵) → 𝐴 ⊆ (ℕ0 ↑m (1...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 ⊆ wss 3860 ↾ cres 5530 ‘cfv 6340 (class class class)co 7156 ↑m cmap 8422 0cc0 10588 1c1 10589 ℕcn 11687 ℕ0cn0 11947 ...cfz 12952 mzPolycmzp 40081 Diophcdioph 40114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-hash 13754 df-mzpcl 40082 df-mzp 40083 df-dioph 40115 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |