![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashbcss | Structured version Visualization version GIF version |
Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
Ref | Expression |
---|---|
hashbcss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝐵 ⊆ 𝐴) | |
2 | 1 | sspwd 4610 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
3 | rabss2 4070 | . . 3 ⊢ (𝒫 𝐵 ⊆ 𝒫 𝐴 → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
5 | simp1 1133 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ 𝑉) | |
6 | 5, 1 | ssexd 5317 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ V) |
7 | simp3 1135 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
8 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
9 | 8 | hashbcval 16944 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁}) |
10 | 6, 7, 9 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁}) |
11 | 8 | hashbcval 16944 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
12 | 11 | 3adant2 1128 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
13 | 4, 10, 12 | 3sstr4d 4024 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 ⊆ wss 3943 𝒫 cpw 4597 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 ℕ0cn0 12476 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 |
This theorem is referenced by: ramval 16950 ramub2 16956 ramub1lem2 16969 |
Copyright terms: Public domain | W3C validator |