MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcss Structured version   Visualization version   GIF version

Theorem hashbcss 16705
Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbcss ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖   𝐵,𝑎,𝑖   𝑁,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐵(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbcss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵𝐴)
21sspwd 4548 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
3 rabss2 4011 . . 3 (𝒫 𝐵 ⊆ 𝒫 𝐴 → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
42, 3syl 17 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
5 simp1 1135 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐴𝑉)
65, 1ssexd 5248 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵 ∈ V)
7 simp3 1137 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
8 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
98hashbcval 16703 . . 3 ((𝐵 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
106, 7, 9syl2anc 584 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
118hashbcval 16703 . . 3 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
12113adant2 1130 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
134, 10, 123sstr4d 3968 1 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887  𝒫 cpw 4533  cfv 6433  (class class class)co 7275  cmpo 7277  0cn0 12233  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  ramval  16709  ramub2  16715  ramub1lem2  16728
  Copyright terms: Public domain W3C validator