MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcss Structured version   Visualization version   GIF version

Theorem hashbcss 17051
Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbcss ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖   𝐵,𝑎,𝑖   𝑁,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐵(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbcss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵𝐴)
21sspwd 4635 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
3 rabss2 4101 . . 3 (𝒫 𝐵 ⊆ 𝒫 𝐴 → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
42, 3syl 17 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
5 simp1 1136 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐴𝑉)
65, 1ssexd 5342 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵 ∈ V)
7 simp3 1138 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
8 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
98hashbcval 17049 . . 3 ((𝐵 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
106, 7, 9syl2anc 583 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
118hashbcval 17049 . . 3 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
12113adant2 1131 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
134, 10, 123sstr4d 4056 1 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  cfv 6573  (class class class)co 7448  cmpo 7450  0cn0 12553  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  ramval  17055  ramub2  17061  ramub1lem2  17074
  Copyright terms: Public domain W3C validator