![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashbcss | Structured version Visualization version GIF version |
Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
Ref | Expression |
---|---|
hashbcss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝐵 ⊆ 𝐴) | |
2 | 1 | sspwd 4618 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝒫 𝐵 ⊆ 𝒫 𝐴) |
3 | rabss2 4088 | . . 3 ⊢ (𝒫 𝐵 ⊆ 𝒫 𝐴 → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
5 | simp1 1135 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ 𝑉) | |
6 | 5, 1 | ssexd 5330 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝐵 ∈ V) |
7 | simp3 1137 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
8 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
9 | 8 | hashbcval 17036 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁}) |
10 | 6, 7, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁}) |
11 | 8 | hashbcval 17036 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
12 | 11 | 3adant2 1130 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁}) |
13 | 4, 10, 12 | 3sstr4d 4043 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ℕ0cn0 12524 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 |
This theorem is referenced by: ramval 17042 ramub2 17048 ramub1lem2 17061 |
Copyright terms: Public domain | W3C validator |