MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcss Structured version   Visualization version   GIF version

Theorem hashbcss 16633
Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbcss ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖   𝐵,𝑎,𝑖   𝑁,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐵(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbcss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵𝐴)
21sspwd 4545 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
3 rabss2 4007 . . 3 (𝒫 𝐵 ⊆ 𝒫 𝐴 → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
42, 3syl 17 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
5 simp1 1134 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐴𝑉)
65, 1ssexd 5243 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵 ∈ V)
7 simp3 1136 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
8 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
98hashbcval 16631 . . 3 ((𝐵 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
106, 7, 9syl2anc 583 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
118hashbcval 16631 . . 3 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
12113adant2 1129 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
134, 10, 123sstr4d 3964 1 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  cfv 6418  (class class class)co 7255  cmpo 7257  0cn0 12163  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  ramval  16637  ramub2  16643  ramub1lem2  16656
  Copyright terms: Public domain W3C validator