MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbcss Structured version   Visualization version   GIF version

Theorem hashbcss 16941
Description: Subset relation for the binomial set. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbcss ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖   𝐵,𝑎,𝑖   𝑁,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐵(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbcss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵𝐴)
21sspwd 4615 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝒫 𝐵 ⊆ 𝒫 𝐴)
3 rabss2 4075 . . 3 (𝒫 𝐵 ⊆ 𝒫 𝐴 → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
42, 3syl 17 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁} ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
5 simp1 1136 . . . 4 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐴𝑉)
65, 1ssexd 5324 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝐵 ∈ V)
7 simp3 1138 . . 3 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
8 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
98hashbcval 16939 . . 3 ((𝐵 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
106, 7, 9syl2anc 584 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) = {𝑥 ∈ 𝒫 𝐵 ∣ (♯‘𝑥) = 𝑁})
118hashbcval 16939 . . 3 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
12113adant2 1131 . 2 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐴𝐶𝑁) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 𝑁})
134, 10, 123sstr4d 4029 1 ((𝐴𝑉𝐵𝐴𝑁 ∈ ℕ0) → (𝐵𝐶𝑁) ⊆ (𝐴𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  wss 3948  𝒫 cpw 4602  cfv 6543  (class class class)co 7411  cmpo 7413  0cn0 12476  chash 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416
This theorem is referenced by:  ramval  16945  ramub2  16951  ramub1lem2  16964
  Copyright terms: Public domain W3C validator