Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004ss1 Structured version   Visualization version   GIF version

Theorem k0004ss1 41731
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004ss1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004ss1
StepHypRef Expression
1 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
21k0004val 41730 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
3 simp2 1136 . . . 4 ((𝑁 ∈ ℕ0𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))))
43rabssdv 4009 . . 3 (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1} ⊆ ((0[,]1) ↑m (1...(𝑁 + 1))))
52, 4eqsstrd 3960 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ ((0[,]1) ↑m (1...(𝑁 + 1))))
6 reex 10960 . . 3 ℝ ∈ V
7 unitssre 13229 . . 3 (0[,]1) ⊆ ℝ
8 mapss 8675 . . 3 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
96, 7, 8mp2an 689 . 2 ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))
105, 9sstrdi 3934 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3431  wss 3888  cmpt 5159  cfv 6435  (class class class)co 7277  m cmap 8613  cr 10868  0cc0 10869  1c1 10870   + caddc 10872  0cn0 12231  [,]cicc 13080  ...cfz 13237  Σcsu 15395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-i2m1 10937  ax-1ne0 10938  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-po 5505  df-so 5506  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-oprab 7281  df-mpo 7282  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-map 8615  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-icc 13084  df-seq 13720  df-sum 15396
This theorem is referenced by:  k0004ss2  41732  k0004ss3  41733
  Copyright terms: Public domain W3C validator