![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004ss1 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004ss1 | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
2 | 1 | k0004val 42891 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
3 | simp2 1137 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1)))) | |
4 | 3 | rabssdv 4072 | . . 3 ⊢ (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1} ⊆ ((0[,]1) ↑m (1...(𝑁 + 1)))) |
5 | 2, 4 | eqsstrd 4020 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ ((0[,]1) ↑m (1...(𝑁 + 1)))) |
6 | reex 11200 | . . 3 ⊢ ℝ ∈ V | |
7 | unitssre 13475 | . . 3 ⊢ (0[,]1) ⊆ ℝ | |
8 | mapss 8882 | . . 3 ⊢ ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | |
9 | 6, 7, 8 | mp2an 690 | . 2 ⊢ ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1))) |
10 | 5, 9 | sstrdi 3994 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ⊆ wss 3948 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7408 ↑m cmap 8819 ℝcr 11108 0cc0 11109 1c1 11110 + caddc 11112 ℕ0cn0 12471 [,]cicc 13326 ...cfz 13483 Σcsu 15631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-i2m1 11177 ax-1ne0 11178 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-icc 13330 df-seq 13966 df-sum 15632 |
This theorem is referenced by: k0004ss2 42893 k0004ss3 42894 |
Copyright terms: Public domain | W3C validator |