Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004ss1 Structured version   Visualization version   GIF version

Theorem k0004ss1 44113
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004ss1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004ss1
StepHypRef Expression
1 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
21k0004val 44112 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
3 simp2 1137 . . . 4 ((𝑁 ∈ ℕ0𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))))
43rabssdv 4098 . . 3 (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1} ⊆ ((0[,]1) ↑m (1...(𝑁 + 1))))
52, 4eqsstrd 4047 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ ((0[,]1) ↑m (1...(𝑁 + 1))))
6 reex 11275 . . 3 ℝ ∈ V
7 unitssre 13559 . . 3 (0[,]1) ⊆ ℝ
8 mapss 8947 . . 3 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
96, 7, 8mp2an 691 . 2 ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))
105, 9sstrdi 4021 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  cmpt 5249  cfv 6573  (class class class)co 7448  m cmap 8884  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  0cn0 12553  [,]cicc 13410  ...cfz 13567  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-i2m1 11252  ax-1ne0 11253  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414  df-seq 14053  df-sum 15735
This theorem is referenced by:  k0004ss2  44114  k0004ss3  44115
  Copyright terms: Public domain W3C validator