Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004ss1 Structured version   Visualization version   GIF version

Theorem k0004ss1 39864
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004ss1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1))))
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004ss1
StepHypRef Expression
1 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
21k0004val 39863 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
3 simp2 1117 . . . 4 ((𝑁 ∈ ℕ0𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))))
43rabssdv 3935 . . 3 (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1} ⊆ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))))
52, 4eqsstrd 3889 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))))
6 reex 10420 . . 3 ℝ ∈ V
7 unitssre 12695 . . 3 (0[,]1) ⊆ ℝ
8 mapss 8245 . . 3 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1))))
96, 7, 8mp2an 679 . 2 ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1)))
105, 9syl6ss 3864 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  {crab 3086  Vcvv 3409  wss 3823  cmpt 5002  cfv 6182  (class class class)co 6970  𝑚 cmap 8200  cr 10328  0cc0 10329  1c1 10330   + caddc 10332  0cn0 11701  [,]cicc 12551  ...cfz 12702  Σcsu 14897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-i2m1 10397  ax-1ne0 10398  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-map 8202  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-icc 12555  df-seq 13179  df-sum 14898
This theorem is referenced by:  k0004ss2  39865  k0004ss3  39866
  Copyright terms: Public domain W3C validator