Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004ss1 Structured version   Visualization version   GIF version

Theorem k0004ss1 44109
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004ss1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004ss1
StepHypRef Expression
1 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
21k0004val 44108 . . 3 (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
3 simp2 1137 . . . 4 ((𝑁 ∈ ℕ0𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))))
43rabssdv 4057 . . 3 (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1} ⊆ ((0[,]1) ↑m (1...(𝑁 + 1))))
52, 4eqsstrd 4000 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ ((0[,]1) ↑m (1...(𝑁 + 1))))
6 reex 11229 . . 3 ℝ ∈ V
7 unitssre 13522 . . 3 (0[,]1) ⊆ ℝ
8 mapss 8912 . . 3 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
96, 7, 8mp2an 692 . 2 ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))
105, 9sstrdi 3978 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3420  Vcvv 3464  wss 3933  cmpt 5207  cfv 6542  (class class class)co 7414  m cmap 8849  cr 11137  0cc0 11138  1c1 11139   + caddc 11141  0cn0 12510  [,]cicc 13373  ...cfz 13530  Σcsu 15705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-i2m1 11206  ax-1ne0 11207  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-icc 13377  df-seq 14026  df-sum 15706
This theorem is referenced by:  k0004ss2  44110  k0004ss3  44111
  Copyright terms: Public domain W3C validator