![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004ss1 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004ss1 | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
2 | 1 | k0004val 39863 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
3 | simp2 1117 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1)))) | |
4 | 3 | rabssdv 3935 | . . 3 ⊢ (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1} ⊆ ((0[,]1) ↑𝑚 (1...(𝑁 + 1)))) |
5 | 2, 4 | eqsstrd 3889 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ ((0[,]1) ↑𝑚 (1...(𝑁 + 1)))) |
6 | reex 10420 | . . 3 ⊢ ℝ ∈ V | |
7 | unitssre 12695 | . . 3 ⊢ (0[,]1) ⊆ ℝ | |
8 | mapss 8245 | . . 3 ⊢ ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1)))) | |
9 | 6, 7, 8 | mp2an 679 | . 2 ⊢ ((0[,]1) ↑𝑚 (1...(𝑁 + 1))) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1))) |
10 | 5, 9 | syl6ss 3864 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑𝑚 (1...(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 {crab 3086 Vcvv 3409 ⊆ wss 3823 ↦ cmpt 5002 ‘cfv 6182 (class class class)co 6970 ↑𝑚 cmap 8200 ℝcr 10328 0cc0 10329 1c1 10330 + caddc 10332 ℕ0cn0 11701 [,]cicc 12551 ...cfz 12702 Σcsu 14897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-i2m1 10397 ax-1ne0 10398 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-po 5320 df-so 5321 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-map 8202 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-icc 12555 df-seq 13179 df-sum 14898 |
This theorem is referenced by: k0004ss2 39865 k0004ss3 39866 |
Copyright terms: Public domain | W3C validator |