![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004ss1 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 𝑁 is a subset of the real vectors of dimension (𝑁 + 1). (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004ss1 | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
2 | 1 | k0004val 44112 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
3 | simp2 1137 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∧ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1) → 𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1)))) | |
4 | 3 | rabssdv 4098 | . . 3 ⊢ (𝑁 ∈ ℕ0 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1} ⊆ ((0[,]1) ↑m (1...(𝑁 + 1)))) |
5 | 2, 4 | eqsstrd 4047 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ ((0[,]1) ↑m (1...(𝑁 + 1)))) |
6 | reex 11275 | . . 3 ⊢ ℝ ∈ V | |
7 | unitssre 13559 | . . 3 ⊢ (0[,]1) ⊆ ℝ | |
8 | mapss 8947 | . . 3 ⊢ ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) | |
9 | 6, 7, 8 | mp2an 691 | . 2 ⊢ ((0[,]1) ↑m (1...(𝑁 + 1))) ⊆ (ℝ ↑m (1...(𝑁 + 1))) |
10 | 5, 9 | sstrdi 4021 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) ⊆ (ℝ ↑m (1...(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 ℕ0cn0 12553 [,]cicc 13410 ...cfz 13567 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 df-seq 14053 df-sum 15735 |
This theorem is referenced by: k0004ss2 44114 k0004ss3 44115 |
Copyright terms: Public domain | W3C validator |