Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topmeet Structured version   Visualization version   GIF version

Theorem topmeet 36365
Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topmeet ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
Distinct variable groups:   𝑗,𝑘,𝑆   𝑗,𝑉,𝑘   𝑗,𝑋,𝑘

Proof of Theorem topmeet
StepHypRef Expression
1 topmtcl 36364 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
2 inss2 4238 . . . . . . 7 (𝒫 𝑋 𝑆) ⊆ 𝑆
3 intss1 4963 . . . . . . 7 (𝑗𝑆 𝑆𝑗)
42, 3sstrid 3995 . . . . . 6 (𝑗𝑆 → (𝒫 𝑋 𝑆) ⊆ 𝑗)
54rgen 3063 . . . . 5 𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗
6 sseq1 4009 . . . . . . 7 (𝑘 = (𝒫 𝑋 𝑆) → (𝑘𝑗 ↔ (𝒫 𝑋 𝑆) ⊆ 𝑗))
76ralbidv 3178 . . . . . 6 (𝑘 = (𝒫 𝑋 𝑆) → (∀𝑗𝑆 𝑘𝑗 ↔ ∀𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗))
87elrab 3692 . . . . 5 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ↔ ((𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗))
95, 8mpbiran2 710 . . . 4 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ↔ (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
101, 9sylibr 234 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
11 elssuni 4937 . . 3 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} → (𝒫 𝑋 𝑆) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
1210, 11syl 17 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
13 toponuni 22920 . . . . . . . . 9 (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = 𝑘)
14 eqimss2 4043 . . . . . . . . 9 (𝑋 = 𝑘 𝑘𝑋)
1513, 14syl 17 . . . . . . . 8 (𝑘 ∈ (TopOn‘𝑋) → 𝑘𝑋)
16 sspwuni 5100 . . . . . . . 8 (𝑘 ⊆ 𝒫 𝑋 𝑘𝑋)
1715, 16sylibr 234 . . . . . . 7 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋)
18173ad2ant2 1135 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ⊆ 𝒫 𝑋)
19 simp3 1139 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → ∀𝑗𝑆 𝑘𝑗)
20 ssint 4964 . . . . . . 7 (𝑘 𝑆 ↔ ∀𝑗𝑆 𝑘𝑗)
2119, 20sylibr 234 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 𝑆)
2218, 21ssind 4241 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ⊆ (𝒫 𝑋 𝑆))
23 velpw 4605 . . . . 5 (𝑘 ∈ 𝒫 (𝒫 𝑋 𝑆) ↔ 𝑘 ⊆ (𝒫 𝑋 𝑆))
2422, 23sylibr 234 . . . 4 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ∈ 𝒫 (𝒫 𝑋 𝑆))
2524rabssdv 4075 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ 𝒫 (𝒫 𝑋 𝑆))
26 sspwuni 5100 . . 3 ({𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ 𝒫 (𝒫 𝑋 𝑆) ↔ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ (𝒫 𝑋 𝑆))
2725, 26sylib 218 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ (𝒫 𝑋 𝑆))
2812, 27eqssd 4001 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cin 3950  wss 3951  𝒫 cpw 4600   cuni 4907   cint 4946  cfv 6561  TopOnctopon 22916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-mre 17629  df-top 22900  df-topon 22917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator