Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topmeet Structured version   Visualization version   GIF version

Theorem topmeet 36382
Description: Two equivalent formulations of the meet of a collection of topologies. (Contributed by Jeff Hankins, 4-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
topmeet ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
Distinct variable groups:   𝑗,𝑘,𝑆   𝑗,𝑉,𝑘   𝑗,𝑋,𝑘

Proof of Theorem topmeet
StepHypRef Expression
1 topmtcl 36381 . . . 4 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
2 inss2 4213 . . . . . . 7 (𝒫 𝑋 𝑆) ⊆ 𝑆
3 intss1 4939 . . . . . . 7 (𝑗𝑆 𝑆𝑗)
42, 3sstrid 3970 . . . . . 6 (𝑗𝑆 → (𝒫 𝑋 𝑆) ⊆ 𝑗)
54rgen 3053 . . . . 5 𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗
6 sseq1 3984 . . . . . . 7 (𝑘 = (𝒫 𝑋 𝑆) → (𝑘𝑗 ↔ (𝒫 𝑋 𝑆) ⊆ 𝑗))
76ralbidv 3163 . . . . . 6 (𝑘 = (𝒫 𝑋 𝑆) → (∀𝑗𝑆 𝑘𝑗 ↔ ∀𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗))
87elrab 3671 . . . . 5 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ↔ ((𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 (𝒫 𝑋 𝑆) ⊆ 𝑗))
95, 8mpbiran2 710 . . . 4 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ↔ (𝒫 𝑋 𝑆) ∈ (TopOn‘𝑋))
101, 9sylibr 234 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
11 elssuni 4913 . . 3 ((𝒫 𝑋 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} → (𝒫 𝑋 𝑆) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
1210, 11syl 17 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) ⊆ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
13 toponuni 22852 . . . . . . . . 9 (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = 𝑘)
14 eqimss2 4018 . . . . . . . . 9 (𝑋 = 𝑘 𝑘𝑋)
1513, 14syl 17 . . . . . . . 8 (𝑘 ∈ (TopOn‘𝑋) → 𝑘𝑋)
16 sspwuni 5076 . . . . . . . 8 (𝑘 ⊆ 𝒫 𝑋 𝑘𝑋)
1715, 16sylibr 234 . . . . . . 7 (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋)
18173ad2ant2 1134 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ⊆ 𝒫 𝑋)
19 simp3 1138 . . . . . . 7 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → ∀𝑗𝑆 𝑘𝑗)
20 ssint 4940 . . . . . . 7 (𝑘 𝑆 ↔ ∀𝑗𝑆 𝑘𝑗)
2119, 20sylibr 234 . . . . . 6 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 𝑆)
2218, 21ssind 4216 . . . . 5 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ⊆ (𝒫 𝑋 𝑆))
23 velpw 4580 . . . . 5 (𝑘 ∈ 𝒫 (𝒫 𝑋 𝑆) ↔ 𝑘 ⊆ (𝒫 𝑋 𝑆))
2422, 23sylibr 234 . . . 4 (((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗𝑆 𝑘𝑗) → 𝑘 ∈ 𝒫 (𝒫 𝑋 𝑆))
2524rabssdv 4050 . . 3 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ 𝒫 (𝒫 𝑋 𝑆))
26 sspwuni 5076 . . 3 ({𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ 𝒫 (𝒫 𝑋 𝑆) ↔ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ (𝒫 𝑋 𝑆))
2725, 26sylib 218 . 2 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗} ⊆ (𝒫 𝑋 𝑆))
2812, 27eqssd 3976 1 ((𝑋𝑉𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 𝑆) = {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗𝑆 𝑘𝑗})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883   cint 4922  cfv 6531  TopOnctopon 22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-mre 17598  df-top 22832  df-topon 22849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator