Proof of Theorem topmeet
| Step | Hyp | Ref
| Expression |
| 1 | | topmtcl 36364 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOn‘𝑋)) |
| 2 | | inss2 4238 |
. . . . . . 7
⊢
(𝒫 𝑋 ∩
∩ 𝑆) ⊆ ∩ 𝑆 |
| 3 | | intss1 4963 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑆 → ∩ 𝑆 ⊆ 𝑗) |
| 4 | 2, 3 | sstrid 3995 |
. . . . . 6
⊢ (𝑗 ∈ 𝑆 → (𝒫 𝑋 ∩ ∩ 𝑆) ⊆ 𝑗) |
| 5 | 4 | rgen 3063 |
. . . . 5
⊢
∀𝑗 ∈
𝑆 (𝒫 𝑋 ∩ ∩ 𝑆)
⊆ 𝑗 |
| 6 | | sseq1 4009 |
. . . . . . 7
⊢ (𝑘 = (𝒫 𝑋 ∩ ∩ 𝑆) → (𝑘 ⊆ 𝑗 ↔ (𝒫 𝑋 ∩ ∩ 𝑆) ⊆ 𝑗)) |
| 7 | 6 | ralbidv 3178 |
. . . . . 6
⊢ (𝑘 = (𝒫 𝑋 ∩ ∩ 𝑆) → (∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗 ↔ ∀𝑗 ∈ 𝑆 (𝒫 𝑋 ∩ ∩ 𝑆) ⊆ 𝑗)) |
| 8 | 7 | elrab 3692 |
. . . . 5
⊢
((𝒫 𝑋 ∩
∩ 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗} ↔ ((𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 (𝒫 𝑋 ∩ ∩ 𝑆) ⊆ 𝑗)) |
| 9 | 5, 8 | mpbiran2 710 |
. . . 4
⊢
((𝒫 𝑋 ∩
∩ 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗} ↔ (𝒫 𝑋 ∩ ∩ 𝑆) ∈ (TopOn‘𝑋)) |
| 10 | 1, 9 | sylibr 234 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗}) |
| 11 | | elssuni 4937 |
. . 3
⊢
((𝒫 𝑋 ∩
∩ 𝑆) ∈ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗} → (𝒫 𝑋 ∩ ∩ 𝑆) ⊆ ∪ {𝑘
∈ (TopOn‘𝑋)
∣ ∀𝑗 ∈
𝑆 𝑘 ⊆ 𝑗}) |
| 12 | 10, 11 | syl 17 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑆) ⊆ ∪ {𝑘
∈ (TopOn‘𝑋)
∣ ∀𝑗 ∈
𝑆 𝑘 ⊆ 𝑗}) |
| 13 | | toponuni 22920 |
. . . . . . . . 9
⊢ (𝑘 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑘) |
| 14 | | eqimss2 4043 |
. . . . . . . . 9
⊢ (𝑋 = ∪
𝑘 → ∪ 𝑘
⊆ 𝑋) |
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ (TopOn‘𝑋) → ∪ 𝑘
⊆ 𝑋) |
| 16 | | sspwuni 5100 |
. . . . . . . 8
⊢ (𝑘 ⊆ 𝒫 𝑋 ↔ ∪ 𝑘
⊆ 𝑋) |
| 17 | 15, 16 | sylibr 234 |
. . . . . . 7
⊢ (𝑘 ∈ (TopOn‘𝑋) → 𝑘 ⊆ 𝒫 𝑋) |
| 18 | 17 | 3ad2ant2 1135 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗) → 𝑘 ⊆ 𝒫 𝑋) |
| 19 | | simp3 1139 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗) → ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗) |
| 20 | | ssint 4964 |
. . . . . . 7
⊢ (𝑘 ⊆ ∩ 𝑆
↔ ∀𝑗 ∈
𝑆 𝑘 ⊆ 𝑗) |
| 21 | 19, 20 | sylibr 234 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗) → 𝑘 ⊆ ∩ 𝑆) |
| 22 | 18, 21 | ssind 4241 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗) → 𝑘 ⊆ (𝒫 𝑋 ∩ ∩ 𝑆)) |
| 23 | | velpw 4605 |
. . . . 5
⊢ (𝑘 ∈ 𝒫 (𝒫
𝑋 ∩ ∩ 𝑆)
↔ 𝑘 ⊆ (𝒫
𝑋 ∩ ∩ 𝑆)) |
| 24 | 22, 23 | sylibr 234 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) ∧ 𝑘 ∈ (TopOn‘𝑋) ∧ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗) → 𝑘 ∈ 𝒫 (𝒫 𝑋 ∩ ∩ 𝑆)) |
| 25 | 24 | rabssdv 4075 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗} ⊆ 𝒫 (𝒫 𝑋 ∩ ∩ 𝑆)) |
| 26 | | sspwuni 5100 |
. . 3
⊢ ({𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗} ⊆ 𝒫 (𝒫 𝑋 ∩ ∩ 𝑆)
↔ ∪ {𝑘 ∈ (TopOn‘𝑋) ∣ ∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗} ⊆ (𝒫 𝑋 ∩ ∩ 𝑆)) |
| 27 | 25, 26 | sylib 218 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → ∪
{𝑘 ∈
(TopOn‘𝑋) ∣
∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗} ⊆ (𝒫 𝑋 ∩ ∩ 𝑆)) |
| 28 | 12, 27 | eqssd 4001 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑆 ⊆ (TopOn‘𝑋)) → (𝒫 𝑋 ∩ ∩ 𝑆) = ∪
{𝑘 ∈
(TopOn‘𝑋) ∣
∀𝑗 ∈ 𝑆 𝑘 ⊆ 𝑗}) |