MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem1 Structured version   Visualization version   GIF version

Theorem lgamgulmlem1 26877
Description: Lemma for lgamgulm 26883. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
Assertion
Ref Expression
lgamgulmlem1 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
Distinct variable groups:   𝑥,𝑘,𝑅   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)

Proof of Theorem lgamgulmlem1
StepHypRef Expression
1 lgamgulm.u . 2 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
2 simp2 1134 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ ℂ)
3 lgamgulm.r . . . . . . . . 9 (𝜑𝑅 ∈ ℕ)
433ad2ant1 1130 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℕ)
54nnred 12224 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℝ)
64nngt0d 12258 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < 𝑅)
75, 6recgt0d 12145 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < (1 / 𝑅))
8 0red 11214 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 ∈ ℝ)
94nnrecred 12260 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (1 / 𝑅) ∈ ℝ)
108, 9ltnled 11358 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (0 < (1 / 𝑅) ↔ ¬ (1 / 𝑅) ≤ 0))
117, 10mpbid 231 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ (1 / 𝑅) ≤ 0)
12 oveq2 7409 . . . . . . . . . . 11 (𝑘 = -𝑥 → (𝑥 + 𝑘) = (𝑥 + -𝑥))
1312fveq2d 6885 . . . . . . . . . 10 (𝑘 = -𝑥 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑥 + -𝑥)))
1413breq2d 5150 . . . . . . . . 9 (𝑘 = -𝑥 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
1514rspccv 3601 . . . . . . . 8 (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
1615adantl 481 . . . . . . 7 (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
17163ad2ant3 1132 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
182negidd 11558 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (𝑥 + -𝑥) = 0)
1918fveq2d 6885 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = (abs‘0))
20 abs0 15229 . . . . . . . 8 (abs‘0) = 0
2119, 20eqtrdi 2780 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = 0)
2221breq2d 5150 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ((1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)) ↔ (1 / 𝑅) ≤ 0))
2317, 22sylibd 238 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ 0))
2411, 23mtod 197 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ -𝑥 ∈ ℕ0)
25 eldmgm 26870 . . . 4 (𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝑥 ∈ ℂ ∧ ¬ -𝑥 ∈ ℕ0))
262, 24, 25sylanbrc 582 . . 3 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2726rabssdv 4064 . 2 (𝜑 → {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
281, 27eqsstrid 4022 1 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  {crab 3424  cdif 3937  wss 3940   class class class wbr 5138  cfv 6533  (class class class)co 7401  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   < clt 11245  cle 11246  -cneg 11442   / cdiv 11868  cn 12209  0cn0 12469  cz 12555  abscabs 15178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180
This theorem is referenced by:  lgamgulmlem2  26878  lgamgulmlem3  26879  lgamgulmlem5  26881  lgamgulmlem6  26882  lgamgulm2  26884  lgambdd  26885
  Copyright terms: Public domain W3C validator