![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgamgulmlem1 | Structured version Visualization version GIF version |
Description: Lemma for lgamgulm 26461. (Contributed by Mario Carneiro, 3-Jul-2017.) |
Ref | Expression |
---|---|
lgamgulm.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
lgamgulm.u | ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} |
Ref | Expression |
---|---|
lgamgulmlem1 | ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgamgulm.u | . 2 ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} | |
2 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ ℂ) | |
3 | lgamgulm.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
4 | 3 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℕ) |
5 | 4 | nnred 12206 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℝ) |
6 | 4 | nngt0d 12240 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < 𝑅) |
7 | 5, 6 | recgt0d 12127 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < (1 / 𝑅)) |
8 | 0red 11196 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 ∈ ℝ) | |
9 | 4 | nnrecred 12242 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (1 / 𝑅) ∈ ℝ) |
10 | 8, 9 | ltnled 11340 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (0 < (1 / 𝑅) ↔ ¬ (1 / 𝑅) ≤ 0)) |
11 | 7, 10 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ (1 / 𝑅) ≤ 0) |
12 | oveq2 7398 | . . . . . . . . . . 11 ⊢ (𝑘 = -𝑥 → (𝑥 + 𝑘) = (𝑥 + -𝑥)) | |
13 | 12 | fveq2d 6879 | . . . . . . . . . 10 ⊢ (𝑘 = -𝑥 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑥 + -𝑥))) |
14 | 13 | breq2d 5150 | . . . . . . . . 9 ⊢ (𝑘 = -𝑥 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
15 | 14 | rspccv 3603 | . . . . . . . 8 ⊢ (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
16 | 15 | adantl 482 | . . . . . . 7 ⊢ (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
17 | 16 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
18 | 2 | negidd 11540 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (𝑥 + -𝑥) = 0) |
19 | 18 | fveq2d 6879 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = (abs‘0)) |
20 | abs0 15211 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
21 | 19, 20 | eqtrdi 2787 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = 0) |
22 | 21 | breq2d 5150 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ((1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)) ↔ (1 / 𝑅) ≤ 0)) |
23 | 17, 22 | sylibd 238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ 0)) |
24 | 11, 23 | mtod 197 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ -𝑥 ∈ ℕ0) |
25 | eldmgm 26448 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝑥 ∈ ℂ ∧ ¬ -𝑥 ∈ ℕ0)) | |
26 | 2, 24, 25 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
27 | 26 | rabssdv 4065 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
28 | 1, 27 | eqsstrid 4023 | 1 ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3060 {crab 3429 ∖ cdif 3938 ⊆ wss 3941 class class class wbr 5138 ‘cfv 6529 (class class class)co 7390 ℂcc 11087 0cc0 11089 1c1 11090 + caddc 11092 < clt 11227 ≤ cle 11228 -cneg 11424 / cdiv 11850 ℕcn 12191 ℕ0cn0 12451 ℤcz 12537 abscabs 15160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7705 ax-cnex 11145 ax-resscn 11146 ax-1cn 11147 ax-icn 11148 ax-addcl 11149 ax-addrcl 11150 ax-mulcl 11151 ax-mulrcl 11152 ax-mulcom 11153 ax-addass 11154 ax-mulass 11155 ax-distr 11156 ax-i2m1 11157 ax-1ne0 11158 ax-1rid 11159 ax-rnegex 11160 ax-rrecex 11161 ax-cnre 11162 ax-pre-lttri 11163 ax-pre-lttrn 11164 ax-pre-ltadd 11165 ax-pre-mulgt0 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3430 df-v 3472 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4520 df-pw 4595 df-sn 4620 df-pr 4622 df-op 4626 df-uni 4899 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6286 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6531 df-fn 6532 df-f 6533 df-f1 6534 df-fo 6535 df-f1o 6536 df-fv 6537 df-riota 7346 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7836 df-2nd 7955 df-frecs 8245 df-wrecs 8276 df-recs 8350 df-rdg 8389 df-er 8683 df-en 8920 df-dom 8921 df-sdom 8922 df-pnf 11229 df-mnf 11230 df-xr 11231 df-ltxr 11232 df-le 11233 df-sub 11425 df-neg 11426 df-div 11851 df-nn 12192 df-2 12254 df-n0 12452 df-z 12538 df-uz 12802 df-rp 12954 df-seq 13946 df-exp 14007 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 |
This theorem is referenced by: lgamgulmlem2 26456 lgamgulmlem3 26457 lgamgulmlem5 26459 lgamgulmlem6 26460 lgamgulm2 26462 lgambdd 26463 |
Copyright terms: Public domain | W3C validator |