MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulmlem1 Structured version   Visualization version   GIF version

Theorem lgamgulmlem1 27073
Description: Lemma for lgamgulm 27079. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
Assertion
Ref Expression
lgamgulmlem1 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
Distinct variable groups:   𝑥,𝑘,𝑅   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)

Proof of Theorem lgamgulmlem1
StepHypRef Expression
1 lgamgulm.u . 2 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
2 simp2 1137 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ ℂ)
3 lgamgulm.r . . . . . . . . 9 (𝜑𝑅 ∈ ℕ)
433ad2ant1 1133 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℕ)
54nnred 12282 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℝ)
64nngt0d 12316 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < 𝑅)
75, 6recgt0d 12203 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < (1 / 𝑅))
8 0red 11265 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 ∈ ℝ)
94nnrecred 12318 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (1 / 𝑅) ∈ ℝ)
108, 9ltnled 11409 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (0 < (1 / 𝑅) ↔ ¬ (1 / 𝑅) ≤ 0))
117, 10mpbid 232 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ (1 / 𝑅) ≤ 0)
12 oveq2 7440 . . . . . . . . . . 11 (𝑘 = -𝑥 → (𝑥 + 𝑘) = (𝑥 + -𝑥))
1312fveq2d 6909 . . . . . . . . . 10 (𝑘 = -𝑥 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑥 + -𝑥)))
1413breq2d 5154 . . . . . . . . 9 (𝑘 = -𝑥 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
1514rspccv 3618 . . . . . . . 8 (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
1615adantl 481 . . . . . . 7 (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
17163ad2ant3 1135 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥))))
182negidd 11611 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (𝑥 + -𝑥) = 0)
1918fveq2d 6909 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = (abs‘0))
20 abs0 15325 . . . . . . . 8 (abs‘0) = 0
2119, 20eqtrdi 2792 . . . . . . 7 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = 0)
2221breq2d 5154 . . . . . 6 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ((1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)) ↔ (1 / 𝑅) ≤ 0))
2317, 22sylibd 239 . . . . 5 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ 0))
2411, 23mtod 198 . . . 4 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ -𝑥 ∈ ℕ0)
25 eldmgm 27066 . . . 4 (𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝑥 ∈ ℂ ∧ ¬ -𝑥 ∈ ℕ0))
262, 24, 25sylanbrc 583 . . 3 ((𝜑𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ)))
2726rabssdv 4074 . 2 (𝜑 → {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
281, 27eqsstrid 4021 1 (𝜑𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  {crab 3435  cdif 3947  wss 3950   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  -cneg 11494   / cdiv 11921  cn 12267  0cn0 12528  cz 12615  abscabs 15274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276
This theorem is referenced by:  lgamgulmlem2  27074  lgamgulmlem3  27075  lgamgulmlem5  27077  lgamgulmlem6  27078  lgamgulm2  27080  lgambdd  27081
  Copyright terms: Public domain W3C validator