![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgamgulmlem1 | Structured version Visualization version GIF version |
Description: Lemma for lgamgulm 25213. (Contributed by Mario Carneiro, 3-Jul-2017.) |
Ref | Expression |
---|---|
lgamgulm.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
lgamgulm.u | ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} |
Ref | Expression |
---|---|
lgamgulmlem1 | ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgamgulm.u | . 2 ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} | |
2 | simp2 1128 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ ℂ) | |
3 | lgamgulm.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
4 | 3 | 3ad2ant1 1124 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℕ) |
5 | 4 | nnred 11391 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℝ) |
6 | 4 | nngt0d 11424 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < 𝑅) |
7 | 5, 6 | recgt0d 11312 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < (1 / 𝑅)) |
8 | 0red 10380 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 ∈ ℝ) | |
9 | 4 | nnrecred 11426 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (1 / 𝑅) ∈ ℝ) |
10 | 8, 9 | ltnled 10523 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (0 < (1 / 𝑅) ↔ ¬ (1 / 𝑅) ≤ 0)) |
11 | 7, 10 | mpbid 224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ (1 / 𝑅) ≤ 0) |
12 | oveq2 6930 | . . . . . . . . . . 11 ⊢ (𝑘 = -𝑥 → (𝑥 + 𝑘) = (𝑥 + -𝑥)) | |
13 | 12 | fveq2d 6450 | . . . . . . . . . 10 ⊢ (𝑘 = -𝑥 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑥 + -𝑥))) |
14 | 13 | breq2d 4898 | . . . . . . . . 9 ⊢ (𝑘 = -𝑥 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
15 | 14 | rspccv 3508 | . . . . . . . 8 ⊢ (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
16 | 15 | adantl 475 | . . . . . . 7 ⊢ (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
17 | 16 | 3ad2ant3 1126 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
18 | 2 | negidd 10724 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (𝑥 + -𝑥) = 0) |
19 | 18 | fveq2d 6450 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = (abs‘0)) |
20 | abs0 14432 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
21 | 19, 20 | syl6eq 2830 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = 0) |
22 | 21 | breq2d 4898 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ((1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)) ↔ (1 / 𝑅) ≤ 0)) |
23 | 17, 22 | sylibd 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ 0)) |
24 | 11, 23 | mtod 190 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ -𝑥 ∈ ℕ0) |
25 | eldmgm 25200 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝑥 ∈ ℂ ∧ ¬ -𝑥 ∈ ℕ0)) | |
26 | 2, 24, 25 | sylanbrc 578 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
27 | 26 | rabssdv 3903 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
28 | 1, 27 | syl5eqss 3868 | 1 ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 {crab 3094 ∖ cdif 3789 ⊆ wss 3792 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 0cc0 10272 1c1 10273 + caddc 10275 < clt 10411 ≤ cle 10412 -cneg 10607 / cdiv 11032 ℕcn 11374 ℕ0cn0 11642 ℤcz 11728 abscabs 14381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 |
This theorem is referenced by: lgamgulmlem2 25208 lgamgulmlem3 25209 lgamgulmlem5 25211 lgamgulmlem6 25212 lgamgulm2 25214 lgambdd 25215 |
Copyright terms: Public domain | W3C validator |