| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgamgulmlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lgamgulm 26945. (Contributed by Mario Carneiro, 3-Jul-2017.) |
| Ref | Expression |
|---|---|
| lgamgulm.r | ⊢ (𝜑 → 𝑅 ∈ ℕ) |
| lgamgulm.u | ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} |
| Ref | Expression |
|---|---|
| lgamgulmlem1 | ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgamgulm.u | . 2 ⊢ 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} | |
| 2 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ ℂ) | |
| 3 | lgamgulm.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ ℕ) | |
| 4 | 3 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℕ) |
| 5 | 4 | nnred 12201 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑅 ∈ ℝ) |
| 6 | 4 | nngt0d 12235 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < 𝑅) |
| 7 | 5, 6 | recgt0d 12117 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 < (1 / 𝑅)) |
| 8 | 0red 11177 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 0 ∈ ℝ) | |
| 9 | 4 | nnrecred 12237 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (1 / 𝑅) ∈ ℝ) |
| 10 | 8, 9 | ltnled 11321 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (0 < (1 / 𝑅) ↔ ¬ (1 / 𝑅) ≤ 0)) |
| 11 | 7, 10 | mpbid 232 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ (1 / 𝑅) ≤ 0) |
| 12 | oveq2 7395 | . . . . . . . . . . 11 ⊢ (𝑘 = -𝑥 → (𝑥 + 𝑘) = (𝑥 + -𝑥)) | |
| 13 | 12 | fveq2d 6862 | . . . . . . . . . 10 ⊢ (𝑘 = -𝑥 → (abs‘(𝑥 + 𝑘)) = (abs‘(𝑥 + -𝑥))) |
| 14 | 13 | breq2d 5119 | . . . . . . . . 9 ⊢ (𝑘 = -𝑥 → ((1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) ↔ (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
| 15 | 14 | rspccv 3585 | . . . . . . . 8 ⊢ (∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ (((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
| 17 | 16 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)))) |
| 18 | 2 | negidd 11523 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (𝑥 + -𝑥) = 0) |
| 19 | 18 | fveq2d 6862 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = (abs‘0)) |
| 20 | abs0 15251 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
| 21 | 19, 20 | eqtrdi 2780 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (abs‘(𝑥 + -𝑥)) = 0) |
| 22 | 21 | breq2d 5119 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ((1 / 𝑅) ≤ (abs‘(𝑥 + -𝑥)) ↔ (1 / 𝑅) ≤ 0)) |
| 23 | 17, 22 | sylibd 239 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → (-𝑥 ∈ ℕ0 → (1 / 𝑅) ≤ 0)) |
| 24 | 11, 23 | mtod 198 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → ¬ -𝑥 ∈ ℕ0) |
| 25 | eldmgm 26932 | . . . 4 ⊢ (𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝑥 ∈ ℂ ∧ ¬ -𝑥 ∈ ℕ0)) | |
| 26 | 2, 24, 25 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ ∧ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))) → 𝑥 ∈ (ℂ ∖ (ℤ ∖ ℕ))) |
| 27 | 26 | rabssdv 4038 | . 2 ⊢ (𝜑 → {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))} ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
| 28 | 1, 27 | eqsstrid 3985 | 1 ⊢ (𝜑 → 𝑈 ⊆ (ℂ ∖ (ℤ ∖ ℕ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ∖ cdif 3911 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 -cneg 11406 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ℤcz 12529 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: lgamgulmlem2 26940 lgamgulmlem3 26941 lgamgulmlem5 26943 lgamgulmlem6 26944 lgamgulm2 26946 lgambdd 26947 |
| Copyright terms: Public domain | W3C validator |