| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppss2 | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
| Ref | Expression |
|---|---|
| suppss2.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
| suppss2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| suppss2 | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 2 | suppss2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝐴 ∈ 𝑉) |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V) | |
| 5 | 1, 3, 4 | mptsuppdifd 8125 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
| 6 | eldifsni 4743 | . . . . . . 7 ⊢ (𝐵 ∈ (V ∖ {𝑍}) → 𝐵 ≠ 𝑍) | |
| 7 | eldif 3908 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) | |
| 8 | suppss2.n | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) | |
| 9 | 8 | adantll 714 | . . . . . . . . . 10 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
| 10 | 7, 9 | sylan2br 595 | . . . . . . . . 9 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → 𝐵 = 𝑍) |
| 11 | 10 | expr 456 | . . . . . . . 8 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → 𝐵 = 𝑍)) |
| 12 | 11 | necon1ad 2946 | . . . . . . 7 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
| 13 | 6, 12 | syl5 34 | . . . . . 6 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ (V ∖ {𝑍}) → 𝑘 ∈ 𝑊)) |
| 14 | 13 | 3impia 1117 | . . . . 5 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ (V ∖ {𝑍})) → 𝑘 ∈ 𝑊) |
| 15 | 14 | rabssdv 4023 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} ⊆ 𝑊) |
| 16 | 5, 15 | eqsstrd 3965 | . . 3 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
| 17 | 16 | ex 412 | . 2 ⊢ (𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
| 18 | id 22 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V) | |
| 19 | 18 | intnand 488 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → ¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V)) |
| 20 | supp0prc 8102 | . . . . 5 ⊢ (¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) |
| 22 | 0ss 4349 | . . . 4 ⊢ ∅ ⊆ 𝑊 | |
| 23 | 21, 22 | eqsstrdi 3975 | . . 3 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
| 24 | 23 | a1d 25 | . 2 ⊢ (¬ 𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
| 25 | 17, 24 | pm2.61i 182 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 {csn 4577 ↦ cmpt 5176 (class class class)co 7355 supp csupp 8099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-supp 8100 |
| This theorem is referenced by: suppsssn 8140 fsuppmptif 9294 sniffsupp 9295 cantnflem1d 9589 cantnflem1 9590 gsumzsplit 19847 gsummpt1n0 19885 gsum2dlem1 19890 gsum2dlem2 19891 gsum2d 19892 dprdfid 19939 dprdfinv 19941 dprdfadd 19942 dmdprdsplitlem 19959 dpjidcl 19980 uvcff 21737 uvcresum 21739 psrlidm 21908 psrridm 21909 mplsubrg 21951 mplmon 21981 mplmonmul 21982 mplcoe1 21983 mplcoe5 21986 mplbas2 21988 evlslem4 22022 evlslem2 22025 evlslem3 22026 evlslem1 22028 evlsvvvallem 22037 evlsvvvallem2 22038 evlsvvval 22039 coe1tmmul2 22209 coe1tmmul 22210 evls1fpws 22304 tsmssplit 24087 coe1mul3 26051 plypf1 26164 tayl0 26316 suppss2f 32642 suppss3 32730 gsummptres2 33064 gsummptfsres 33065 elrgspnlem1 33252 elrgspnlem2 33253 elrgspnlem3 33254 elrgspnsubrunlem2 33258 elrspunidl 33437 elrspunsn 33438 fedgmullem2 33715 fldextrspunlsp 33759 evlsbagval 42727 selvvvval 42743 evlselv 42745 mhpind 42752 evlsmhpvvval 42753 |
| Copyright terms: Public domain | W3C validator |