Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppss2 | Structured version Visualization version GIF version |
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
suppss2.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
suppss2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppss2 | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
2 | suppss2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝐴 ∈ 𝑉) |
4 | simpl 482 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V) | |
5 | 1, 3, 4 | mptsuppdifd 7973 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
6 | eldifsni 4720 | . . . . . . 7 ⊢ (𝐵 ∈ (V ∖ {𝑍}) → 𝐵 ≠ 𝑍) | |
7 | eldif 3893 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) | |
8 | suppss2.n | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) | |
9 | 8 | adantll 710 | . . . . . . . . . 10 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
10 | 7, 9 | sylan2br 594 | . . . . . . . . 9 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → 𝐵 = 𝑍) |
11 | 10 | expr 456 | . . . . . . . 8 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → 𝐵 = 𝑍)) |
12 | 11 | necon1ad 2959 | . . . . . . 7 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
13 | 6, 12 | syl5 34 | . . . . . 6 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ (V ∖ {𝑍}) → 𝑘 ∈ 𝑊)) |
14 | 13 | 3impia 1115 | . . . . 5 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ (V ∖ {𝑍})) → 𝑘 ∈ 𝑊) |
15 | 14 | rabssdv 4004 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} ⊆ 𝑊) |
16 | 5, 15 | eqsstrd 3955 | . . 3 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
17 | 16 | ex 412 | . 2 ⊢ (𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
18 | id 22 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V) | |
19 | 18 | intnand 488 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → ¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V)) |
20 | supp0prc 7951 | . . . . 5 ⊢ (¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) |
22 | 0ss 4327 | . . . 4 ⊢ ∅ ⊆ 𝑊 | |
23 | 21, 22 | eqsstrdi 3971 | . . 3 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
24 | 23 | a1d 25 | . 2 ⊢ (¬ 𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
25 | 17, 24 | pm2.61i 182 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 {csn 4558 ↦ cmpt 5153 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: suppsssn 7988 fsuppmptif 9088 sniffsupp 9089 cantnflem1d 9376 cantnflem1 9377 gsumzsplit 19443 gsummpt1n0 19481 gsum2dlem1 19486 gsum2dlem2 19487 gsum2d 19488 dprdfid 19535 dprdfinv 19537 dprdfadd 19538 dmdprdsplitlem 19555 dpjidcl 19576 uvcff 20908 uvcresum 20910 psrbagaddclOLD 21042 psrlidm 21082 psrridm 21083 mplsubrg 21121 mplmon 21146 mplmonmul 21147 mplcoe1 21148 mplcoe5 21151 mplbas2 21153 evlslem4 21194 evlslem2 21199 evlslem3 21200 evlslem1 21202 coe1tmmul2 21357 coe1tmmul 21358 tsmssplit 23211 coe1mul3 25169 plypf1 25278 tayl0 25426 suppss2f 30875 suppss3 30961 gsummptres2 31215 elrspunidl 31508 fedgmullem2 31613 evlsbagval 40198 mhpind 40206 mhphf 40208 |
Copyright terms: Public domain | W3C validator |