Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppss2 | Structured version Visualization version GIF version |
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
suppss2.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
suppss2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppss2 | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
2 | suppss2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | adantl 485 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝐴 ∈ 𝑉) |
4 | simpl 486 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V) | |
5 | 1, 3, 4 | mptsuppdifd 7865 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
6 | eldifsni 4683 | . . . . . . 7 ⊢ (𝐵 ∈ (V ∖ {𝑍}) → 𝐵 ≠ 𝑍) | |
7 | eldif 3870 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) | |
8 | suppss2.n | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) | |
9 | 8 | adantll 713 | . . . . . . . . . 10 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
10 | 7, 9 | sylan2br 597 | . . . . . . . . 9 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → 𝐵 = 𝑍) |
11 | 10 | expr 460 | . . . . . . . 8 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → 𝐵 = 𝑍)) |
12 | 11 | necon1ad 2968 | . . . . . . 7 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
13 | 6, 12 | syl5 34 | . . . . . 6 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ (V ∖ {𝑍}) → 𝑘 ∈ 𝑊)) |
14 | 13 | 3impia 1114 | . . . . 5 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ (V ∖ {𝑍})) → 𝑘 ∈ 𝑊) |
15 | 14 | rabssdv 3981 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} ⊆ 𝑊) |
16 | 5, 15 | eqsstrd 3932 | . . 3 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
17 | 16 | ex 416 | . 2 ⊢ (𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
18 | id 22 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V) | |
19 | 18 | intnand 492 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → ¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V)) |
20 | supp0prc 7843 | . . . . 5 ⊢ (¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) |
22 | 0ss 4295 | . . . 4 ⊢ ∅ ⊆ 𝑊 | |
23 | 21, 22 | eqsstrdi 3948 | . . 3 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
24 | 23 | a1d 25 | . 2 ⊢ (¬ 𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
25 | 17, 24 | pm2.61i 185 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 {crab 3074 Vcvv 3409 ∖ cdif 3857 ⊆ wss 3860 ∅c0 4227 {csn 4525 ↦ cmpt 5115 (class class class)co 7155 supp csupp 7840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-supp 7841 |
This theorem is referenced by: suppsssn 7880 fsuppmptif 8901 sniffsupp 8902 cantnflem1d 9189 cantnflem1 9190 gsumzsplit 19120 gsummpt1n0 19158 gsum2dlem1 19163 gsum2dlem2 19164 gsum2d 19165 dprdfid 19212 dprdfinv 19214 dprdfadd 19215 dmdprdsplitlem 19232 dpjidcl 19253 uvcff 20561 uvcresum 20563 psrbagaddclOLD 20696 psrlidm 20736 psrridm 20737 mplsubrg 20775 mplmon 20800 mplmonmul 20801 mplcoe1 20802 mplcoe5 20805 mplbas2 20807 evlslem4 20842 evlslem2 20847 evlslem3 20848 evlslem1 20850 coe1tmmul2 21005 coe1tmmul 21006 tsmssplit 22857 coe1mul3 24804 plypf1 24913 tayl0 25061 suppss2f 30501 suppss3 30587 gsummptres2 30843 elrspunidl 31131 fedgmullem2 31236 evlsbagval 39808 mhpind 39816 mhphf 39818 |
Copyright terms: Public domain | W3C validator |