Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppss2 | Structured version Visualization version GIF version |
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
suppss2.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
suppss2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppss2 | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
2 | suppss2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝐴 ∈ 𝑉) |
4 | simpl 483 | . . . . 5 ⊢ ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V) | |
5 | 1, 3, 4 | mptsuppdifd 8002 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
6 | eldifsni 4723 | . . . . . . 7 ⊢ (𝐵 ∈ (V ∖ {𝑍}) → 𝐵 ≠ 𝑍) | |
7 | eldif 3897 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) | |
8 | suppss2.n | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) | |
9 | 8 | adantll 711 | . . . . . . . . . 10 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
10 | 7, 9 | sylan2br 595 | . . . . . . . . 9 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊)) → 𝐵 = 𝑍) |
11 | 10 | expr 457 | . . . . . . . 8 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (¬ 𝑘 ∈ 𝑊 → 𝐵 = 𝑍)) |
12 | 11 | necon1ad 2960 | . . . . . . 7 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ≠ 𝑍 → 𝑘 ∈ 𝑊)) |
13 | 6, 12 | syl5 34 | . . . . . 6 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ (V ∖ {𝑍}) → 𝑘 ∈ 𝑊)) |
14 | 13 | 3impia 1116 | . . . . 5 ⊢ (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ (V ∖ {𝑍})) → 𝑘 ∈ 𝑊) |
15 | 14 | rabssdv 4008 | . . . 4 ⊢ ((𝑍 ∈ V ∧ 𝜑) → {𝑘 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} ⊆ 𝑊) |
16 | 5, 15 | eqsstrd 3959 | . . 3 ⊢ ((𝑍 ∈ V ∧ 𝜑) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
17 | 16 | ex 413 | . 2 ⊢ (𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
18 | id 22 | . . . . . 6 ⊢ (¬ 𝑍 ∈ V → ¬ 𝑍 ∈ V) | |
19 | 18 | intnand 489 | . . . . 5 ⊢ (¬ 𝑍 ∈ V → ¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V)) |
20 | supp0prc 7980 | . . . . 5 ⊢ (¬ ((𝑘 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ 𝑍 ∈ V) → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ∅) |
22 | 0ss 4330 | . . . 4 ⊢ ∅ ⊆ 𝑊 | |
23 | 21, 22 | eqsstrdi 3975 | . . 3 ⊢ (¬ 𝑍 ∈ V → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
24 | 23 | a1d 25 | . 2 ⊢ (¬ 𝑍 ∈ V → (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊)) |
25 | 17, 24 | pm2.61i 182 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 {csn 4561 ↦ cmpt 5157 (class class class)co 7275 supp csupp 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 |
This theorem is referenced by: suppsssn 8017 fsuppmptif 9158 sniffsupp 9159 cantnflem1d 9446 cantnflem1 9447 gsumzsplit 19528 gsummpt1n0 19566 gsum2dlem1 19571 gsum2dlem2 19572 gsum2d 19573 dprdfid 19620 dprdfinv 19622 dprdfadd 19623 dmdprdsplitlem 19640 dpjidcl 19661 uvcff 20998 uvcresum 21000 psrbagaddclOLD 21132 psrlidm 21172 psrridm 21173 mplsubrg 21211 mplmon 21236 mplmonmul 21237 mplcoe1 21238 mplcoe5 21241 mplbas2 21243 evlslem4 21284 evlslem2 21289 evlslem3 21290 evlslem1 21292 coe1tmmul2 21447 coe1tmmul 21448 tsmssplit 23303 coe1mul3 25264 plypf1 25373 tayl0 25521 suppss2f 30974 suppss3 31059 gsummptres2 31313 elrspunidl 31606 fedgmullem2 31711 evlsbagval 40275 mhpind 40283 mhphf 40285 |
Copyright terms: Public domain | W3C validator |