MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppss2 Structured version   Visualization version   GIF version

Theorem suppss2 8223
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppss2.n ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
suppss2.a (𝜑𝐴𝑉)
Assertion
Ref Expression
suppss2 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem suppss2
StepHypRef Expression
1 eqid 2734 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
2 suppss2.a . . . . . 6 (𝜑𝐴𝑉)
32adantl 481 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝐴𝑉)
4 simpl 482 . . . . 5 ((𝑍 ∈ V ∧ 𝜑) → 𝑍 ∈ V)
51, 3, 4mptsuppdifd 8209 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → ((𝑘𝐴𝐵) supp 𝑍) = {𝑘𝐴𝐵 ∈ (V ∖ {𝑍})})
6 eldifsni 4794 . . . . . . 7 (𝐵 ∈ (V ∖ {𝑍}) → 𝐵𝑍)
7 eldif 3972 . . . . . . . . . 10 (𝑘 ∈ (𝐴𝑊) ↔ (𝑘𝐴 ∧ ¬ 𝑘𝑊))
8 suppss2.n . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
98adantll 714 . . . . . . . . . 10 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
107, 9sylan2br 595 . . . . . . . . 9 (((𝑍 ∈ V ∧ 𝜑) ∧ (𝑘𝐴 ∧ ¬ 𝑘𝑊)) → 𝐵 = 𝑍)
1110expr 456 . . . . . . . 8 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴) → (¬ 𝑘𝑊𝐵 = 𝑍))
1211necon1ad 2954 . . . . . . 7 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴) → (𝐵𝑍𝑘𝑊))
136, 12syl5 34 . . . . . 6 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴) → (𝐵 ∈ (V ∖ {𝑍}) → 𝑘𝑊))
14133impia 1116 . . . . 5 (((𝑍 ∈ V ∧ 𝜑) ∧ 𝑘𝐴𝐵 ∈ (V ∖ {𝑍})) → 𝑘𝑊)
1514rabssdv 4084 . . . 4 ((𝑍 ∈ V ∧ 𝜑) → {𝑘𝐴𝐵 ∈ (V ∖ {𝑍})} ⊆ 𝑊)
165, 15eqsstrd 4033 . . 3 ((𝑍 ∈ V ∧ 𝜑) → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
1716ex 412 . 2 (𝑍 ∈ V → (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊))
18 id 22 . . . . . 6 𝑍 ∈ V → ¬ 𝑍 ∈ V)
1918intnand 488 . . . . 5 𝑍 ∈ V → ¬ ((𝑘𝐴𝐵) ∈ V ∧ 𝑍 ∈ V))
20 supp0prc 8186 . . . . 5 (¬ ((𝑘𝐴𝐵) ∈ V ∧ 𝑍 ∈ V) → ((𝑘𝐴𝐵) supp 𝑍) = ∅)
2119, 20syl 17 . . . 4 𝑍 ∈ V → ((𝑘𝐴𝐵) supp 𝑍) = ∅)
22 0ss 4405 . . . 4 ∅ ⊆ 𝑊
2321, 22eqsstrdi 4049 . . 3 𝑍 ∈ V → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
2423a1d 25 . 2 𝑍 ∈ V → (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊))
2517, 24pm2.61i 182 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432  Vcvv 3477  cdif 3959  wss 3962  c0 4338  {csn 4630  cmpt 5230  (class class class)co 7430   supp csupp 8183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-supp 8184
This theorem is referenced by:  suppsssn  8224  fsuppmptif  9436  sniffsupp  9437  cantnflem1d  9725  cantnflem1  9726  gsumzsplit  19959  gsummpt1n0  19997  gsum2dlem1  20002  gsum2dlem2  20003  gsum2d  20004  dprdfid  20051  dprdfinv  20053  dprdfadd  20054  dmdprdsplitlem  20071  dpjidcl  20092  uvcff  21828  uvcresum  21830  psrlidm  21999  psrridm  22000  mplsubrg  22042  mplmon  22070  mplmonmul  22071  mplcoe1  22072  mplcoe5  22075  mplbas2  22077  evlslem4  22117  evlslem2  22120  evlslem3  22121  evlslem1  22123  coe1tmmul2  22294  coe1tmmul  22295  evls1fpws  22388  tsmssplit  24175  coe1mul3  26152  plypf1  26265  tayl0  26417  suppss2f  32654  suppss3  32741  gsummptres2  33038  elrgspnlem1  33231  elrgspnlem2  33232  elrgspnlem3  33233  elrspunidl  33435  elrspunsn  33436  fedgmullem2  33657  evlsvvvallem  42547  evlsvvvallem2  42548  evlsvvval  42549  evlsbagval  42552  selvvvval  42571  evlselv  42573  mhpind  42580  evlsmhpvvval  42581
  Copyright terms: Public domain W3C validator