Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd2rabex Structured version   Visualization version   GIF version

Theorem nadd2rabex 43419
Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd2rabex ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd2rabex
StepHypRef Expression
1 simp3 1138 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On)
2 0elon 6356 . . . . . . . 8 ∅ ∈ On
3 ordelon 6325 . . . . . . . . 9 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
433ad2antl1 1186 . . . . . . . 8 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝑥 ∈ On)
5 naddcom 8592 . . . . . . . 8 ((∅ ∈ On ∧ 𝑥 ∈ On) → (∅ +no 𝑥) = (𝑥 +no ∅))
62, 4, 5sylancr 587 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) = (𝑥 +no ∅))
7 naddrid 8593 . . . . . . . 8 (𝑥 ∈ On → (𝑥 +no ∅) = 𝑥)
84, 7syl 17 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (𝑥 +no ∅) = 𝑥)
96, 8eqtrd 2766 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) = 𝑥)
10 0ss 4345 . . . . . . 7 ∅ ⊆ 𝐵
11 simpl2 1193 . . . . . . . 8 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝐵 ∈ On)
12 naddssim 8595 . . . . . . . 8 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)))
132, 11, 4, 12mp3an2i 1468 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)))
1410, 13mpi 20 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))
159, 14eqsstrrd 3965 . . . . 5 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐵 +no 𝑥))
16 simpl3 1194 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝐶 ∈ On)
17 ontr2 6349 . . . . . 6 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶))
184, 16, 17syl2anc 584 . . . . 5 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶))
1915, 18mpand 695 . . . 4 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶𝑥𝐶))
20193impia 1117 . . 3 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴 ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶)
2120rabssdv 4020 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐶)
221, 21ssexd 5257 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  c0 4278  Ord word 6300  Oncon0 6301  (class class class)co 7341   +no cnadd 8575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-frecs 8206  df-nadd 8576
This theorem is referenced by:  nadd2rabon  43420  nadd1rabex  43423
  Copyright terms: Public domain W3C validator