| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd2rabex | Structured version Visualization version GIF version | ||
| Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| nadd2rabex | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On) | |
| 2 | 0elon 6366 | . . . . . . . 8 ⊢ ∅ ∈ On | |
| 3 | ordelon 6335 | . . . . . . . . 9 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 4 | 3 | 3ad2antl1 1186 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
| 5 | naddcom 8607 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝑥 ∈ On) → (∅ +no 𝑥) = (𝑥 +no ∅)) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = (𝑥 +no ∅)) |
| 7 | naddrid 8608 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑥 +no ∅) = 𝑥) | |
| 8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (𝑥 +no ∅) = 𝑥) |
| 9 | 6, 8 | eqtrd 2764 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = 𝑥) |
| 10 | 0ss 4353 | . . . . . . 7 ⊢ ∅ ⊆ 𝐵 | |
| 11 | simpl2 1193 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ On) | |
| 12 | naddssim 8610 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) | |
| 13 | 2, 11, 4, 12 | mp3an2i 1468 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) |
| 14 | 10, 13 | mpi 20 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)) |
| 15 | 9, 14 | eqsstrrd 3973 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐵 +no 𝑥)) |
| 16 | simpl3 1194 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ On) | |
| 17 | ontr2 6359 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐶 ∈ On) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) | |
| 18 | 4, 16, 17 | syl2anc 584 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) |
| 19 | 15, 18 | mpand 695 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶 → 𝑥 ∈ 𝐶)) |
| 20 | 19 | 3impia 1117 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴 ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶) |
| 21 | 20 | rabssdv 4028 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐶) |
| 22 | 1, 21 | ssexd 5266 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 Ord word 6310 Oncon0 6311 (class class class)co 7353 +no cnadd 8590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-nadd 8591 |
| This theorem is referenced by: nadd2rabon 43380 nadd1rabex 43383 |
| Copyright terms: Public domain | W3C validator |