| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd2rabex | Structured version Visualization version GIF version | ||
| Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| nadd2rabex | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On) | |
| 2 | 0elon 6390 | . . . . . . . 8 ⊢ ∅ ∈ On | |
| 3 | ordelon 6359 | . . . . . . . . 9 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 4 | 3 | 3ad2antl1 1186 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
| 5 | naddcom 8649 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝑥 ∈ On) → (∅ +no 𝑥) = (𝑥 +no ∅)) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = (𝑥 +no ∅)) |
| 7 | naddrid 8650 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑥 +no ∅) = 𝑥) | |
| 8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (𝑥 +no ∅) = 𝑥) |
| 9 | 6, 8 | eqtrd 2765 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = 𝑥) |
| 10 | 0ss 4366 | . . . . . . 7 ⊢ ∅ ⊆ 𝐵 | |
| 11 | simpl2 1193 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ On) | |
| 12 | naddssim 8652 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) | |
| 13 | 2, 11, 4, 12 | mp3an2i 1468 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) |
| 14 | 10, 13 | mpi 20 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)) |
| 15 | 9, 14 | eqsstrrd 3985 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐵 +no 𝑥)) |
| 16 | simpl3 1194 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ On) | |
| 17 | ontr2 6383 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐶 ∈ On) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) | |
| 18 | 4, 16, 17 | syl2anc 584 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) |
| 19 | 15, 18 | mpand 695 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶 → 𝑥 ∈ 𝐶)) |
| 20 | 19 | 3impia 1117 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴 ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶) |
| 21 | 20 | rabssdv 4041 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐶) |
| 22 | 1, 21 | ssexd 5282 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 Ord word 6334 Oncon0 6335 (class class class)co 7390 +no cnadd 8632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-frecs 8263 df-nadd 8633 |
| This theorem is referenced by: nadd2rabon 43383 nadd1rabex 43386 |
| Copyright terms: Public domain | W3C validator |