| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd2rabex | Structured version Visualization version GIF version | ||
| Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| nadd2rabex | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On) | |
| 2 | 0elon 6407 | . . . . . . . 8 ⊢ ∅ ∈ On | |
| 3 | ordelon 6376 | . . . . . . . . 9 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 4 | 3 | 3ad2antl1 1186 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
| 5 | naddcom 8694 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝑥 ∈ On) → (∅ +no 𝑥) = (𝑥 +no ∅)) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = (𝑥 +no ∅)) |
| 7 | naddrid 8695 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑥 +no ∅) = 𝑥) | |
| 8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (𝑥 +no ∅) = 𝑥) |
| 9 | 6, 8 | eqtrd 2770 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = 𝑥) |
| 10 | 0ss 4375 | . . . . . . 7 ⊢ ∅ ⊆ 𝐵 | |
| 11 | simpl2 1193 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ On) | |
| 12 | naddssim 8697 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) | |
| 13 | 2, 11, 4, 12 | mp3an2i 1468 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) |
| 14 | 10, 13 | mpi 20 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)) |
| 15 | 9, 14 | eqsstrrd 3994 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐵 +no 𝑥)) |
| 16 | simpl3 1194 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ On) | |
| 17 | ontr2 6400 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐶 ∈ On) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) | |
| 18 | 4, 16, 17 | syl2anc 584 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) |
| 19 | 15, 18 | mpand 695 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶 → 𝑥 ∈ 𝐶)) |
| 20 | 19 | 3impia 1117 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴 ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶) |
| 21 | 20 | rabssdv 4050 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐶) |
| 22 | 1, 21 | ssexd 5294 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 Ord word 6351 Oncon0 6352 (class class class)co 7405 +no cnadd 8677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-frecs 8280 df-nadd 8678 |
| This theorem is referenced by: nadd2rabon 43411 nadd1rabex 43414 |
| Copyright terms: Public domain | W3C validator |