![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nadd2rabex | Structured version Visualization version GIF version |
Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
Ref | Expression |
---|---|
nadd2rabex | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On) | |
2 | 0elon 6425 | . . . . . . . 8 ⊢ ∅ ∈ On | |
3 | ordelon 6395 | . . . . . . . . 9 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
4 | 3 | 3ad2antl1 1182 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) |
5 | naddcom 8703 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝑥 ∈ On) → (∅ +no 𝑥) = (𝑥 +no ∅)) | |
6 | 2, 4, 5 | sylancr 585 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = (𝑥 +no ∅)) |
7 | naddrid 8704 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑥 +no ∅) = 𝑥) | |
8 | 4, 7 | syl 17 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (𝑥 +no ∅) = 𝑥) |
9 | 6, 8 | eqtrd 2765 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) = 𝑥) |
10 | 0ss 4398 | . . . . . . 7 ⊢ ∅ ⊆ 𝐵 | |
11 | simpl2 1189 | . . . . . . . 8 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ On) | |
12 | naddssim 8706 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) | |
13 | 2, 11, 4, 12 | mp3an2i 1462 | . . . . . . 7 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))) |
14 | 10, 13 | mpi 20 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)) |
15 | 9, 14 | eqsstrrd 4016 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ (𝐵 +no 𝑥)) |
16 | simpl3 1190 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ On) | |
17 | ontr2 6418 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝐶 ∈ On) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) | |
18 | 4, 16, 17 | syl2anc 582 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶)) |
19 | 15, 18 | mpand 693 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶 → 𝑥 ∈ 𝐶)) |
20 | 19 | 3impia 1114 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥 ∈ 𝐴 ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥 ∈ 𝐶) |
21 | 20 | rabssdv 4068 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐶) |
22 | 1, 21 | ssexd 5325 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 ⊆ wss 3944 ∅c0 4322 Ord word 6370 Oncon0 6371 (class class class)co 7419 +no cnadd 8686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-frecs 8287 df-nadd 8687 |
This theorem is referenced by: nadd2rabon 42958 nadd1rabex 42961 |
Copyright terms: Public domain | W3C validator |