Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd2rabex Structured version   Visualization version   GIF version

Theorem nadd2rabex 43348
Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd2rabex ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd2rabex
StepHypRef Expression
1 simp3 1138 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On)
2 0elon 6449 . . . . . . . 8 ∅ ∈ On
3 ordelon 6419 . . . . . . . . 9 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
433ad2antl1 1185 . . . . . . . 8 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝑥 ∈ On)
5 naddcom 8738 . . . . . . . 8 ((∅ ∈ On ∧ 𝑥 ∈ On) → (∅ +no 𝑥) = (𝑥 +no ∅))
62, 4, 5sylancr 586 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) = (𝑥 +no ∅))
7 naddrid 8739 . . . . . . . 8 (𝑥 ∈ On → (𝑥 +no ∅) = 𝑥)
84, 7syl 17 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (𝑥 +no ∅) = 𝑥)
96, 8eqtrd 2780 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) = 𝑥)
10 0ss 4423 . . . . . . 7 ∅ ⊆ 𝐵
11 simpl2 1192 . . . . . . . 8 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝐵 ∈ On)
12 naddssim 8741 . . . . . . . 8 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)))
132, 11, 4, 12mp3an2i 1466 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)))
1410, 13mpi 20 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))
159, 14eqsstrrd 4048 . . . . 5 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐵 +no 𝑥))
16 simpl3 1193 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝐶 ∈ On)
17 ontr2 6442 . . . . . 6 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶))
184, 16, 17syl2anc 583 . . . . 5 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶))
1915, 18mpand 694 . . . 4 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶𝑥𝐶))
20193impia 1117 . . 3 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴 ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶)
2120rabssdv 4098 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐶)
221, 21ssexd 5342 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  c0 4352  Ord word 6394  Oncon0 6395  (class class class)co 7448   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-nadd 8722
This theorem is referenced by:  nadd2rabon  43349  nadd1rabex  43352
  Copyright terms: Public domain W3C validator