Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nadd2rabex Structured version   Visualization version   GIF version

Theorem nadd2rabex 42879
Description: The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.)
Assertion
Ref Expression
nadd2rabex ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem nadd2rabex
StepHypRef Expression
1 simp3 1135 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On)
2 0elon 6418 . . . . . . . 8 ∅ ∈ On
3 ordelon 6388 . . . . . . . . 9 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
433ad2antl1 1182 . . . . . . . 8 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝑥 ∈ On)
5 naddcom 8699 . . . . . . . 8 ((∅ ∈ On ∧ 𝑥 ∈ On) → (∅ +no 𝑥) = (𝑥 +no ∅))
62, 4, 5sylancr 585 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) = (𝑥 +no ∅))
7 naddrid 8700 . . . . . . . 8 (𝑥 ∈ On → (𝑥 +no ∅) = 𝑥)
84, 7syl 17 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (𝑥 +no ∅) = 𝑥)
96, 8eqtrd 2765 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) = 𝑥)
10 0ss 4392 . . . . . . 7 ∅ ⊆ 𝐵
11 simpl2 1189 . . . . . . . 8 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝐵 ∈ On)
12 naddssim 8702 . . . . . . . 8 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)))
132, 11, 4, 12mp3an2i 1462 . . . . . . 7 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ ⊆ 𝐵 → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥)))
1410, 13mpi 20 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → (∅ +no 𝑥) ⊆ (𝐵 +no 𝑥))
159, 14eqsstrrd 4012 . . . . 5 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝑥 ⊆ (𝐵 +no 𝑥))
16 simpl3 1190 . . . . . 6 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → 𝐶 ∈ On)
17 ontr2 6411 . . . . . 6 ((𝑥 ∈ On ∧ 𝐶 ∈ On) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶))
184, 16, 17syl2anc 582 . . . . 5 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → ((𝑥 ⊆ (𝐵 +no 𝑥) ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶))
1915, 18mpand 693 . . . 4 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴) → ((𝐵 +no 𝑥) ∈ 𝐶𝑥𝐶))
20193impia 1114 . . 3 (((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝑥𝐴 ∧ (𝐵 +no 𝑥) ∈ 𝐶) → 𝑥𝐶)
2120rabssdv 4064 . 2 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ⊆ 𝐶)
221, 21ssexd 5319 1 ((Ord 𝐴𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {crab 3419  Vcvv 3463  wss 3940  c0 4318  Ord word 6363  Oncon0 6364  (class class class)co 7415   +no cnadd 8682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-frecs 8283  df-nadd 8683
This theorem is referenced by:  nadd2rabon  42880  nadd1rabex  42883
  Copyright terms: Public domain W3C validator