MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2b Structured version   Visualization version   GIF version

Theorem funcres2b 17859
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
funcres2b.a 𝐴 = (Base‘𝐶)
funcres2b.h 𝐻 = (Hom ‘𝐶)
funcres2b.r (𝜑𝑅 ∈ (Subcat‘𝐷))
funcres2b.s (𝜑𝑅 Fn (𝑆 × 𝑆))
funcres2b.1 (𝜑𝐹:𝐴𝑆)
funcres2b.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹𝑥)𝑅(𝐹𝑦)))
Assertion
Ref Expression
funcres2b (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem funcres2b
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5108 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
2 funcrcl 17825 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
31, 2sylbi 217 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
43simpld 494 . . 3 (𝐹(𝐶 Func 𝐷)𝐺𝐶 ∈ Cat)
54a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐶 ∈ Cat))
6 df-br 5108 . . . . 5 (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func (𝐷cat 𝑅)))
7 funcrcl 17825 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func (𝐷cat 𝑅)) → (𝐶 ∈ Cat ∧ (𝐷cat 𝑅) ∈ Cat))
86, 7sylbi 217 . . . 4 (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺 → (𝐶 ∈ Cat ∧ (𝐷cat 𝑅) ∈ Cat))
98simpld 494 . . 3 (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺𝐶 ∈ Cat)
109a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺𝐶 ∈ Cat))
11 funcres2b.1 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
12 funcres2b.r . . . . . . . . 9 (𝜑𝑅 ∈ (Subcat‘𝐷))
13 funcres2b.s . . . . . . . . 9 (𝜑𝑅 Fn (𝑆 × 𝑆))
14 eqid 2729 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
1512, 13, 14subcss1 17804 . . . . . . . 8 (𝜑𝑆 ⊆ (Base‘𝐷))
1611, 15fssd 6705 . . . . . . 7 (𝜑𝐹:𝐴⟶(Base‘𝐷))
17 eqid 2729 . . . . . . . . . 10 (𝐷cat 𝑅) = (𝐷cat 𝑅)
18 subcrcl 17778 . . . . . . . . . . 11 (𝑅 ∈ (Subcat‘𝐷) → 𝐷 ∈ Cat)
1912, 18syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
2017, 14, 19, 13, 15rescbas 17791 . . . . . . . . 9 (𝜑𝑆 = (Base‘(𝐷cat 𝑅)))
2120feq3d 6673 . . . . . . . 8 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘(𝐷cat 𝑅))))
2211, 21mpbid 232 . . . . . . 7 (𝜑𝐹:𝐴⟶(Base‘(𝐷cat 𝑅)))
2316, 222thd 265 . . . . . 6 (𝜑 → (𝐹:𝐴⟶(Base‘𝐷) ↔ 𝐹:𝐴⟶(Base‘(𝐷cat 𝑅))))
2423adantr 480 . . . . 5 ((𝜑𝐶 ∈ Cat) → (𝐹:𝐴⟶(Base‘𝐷) ↔ 𝐹:𝐴⟶(Base‘(𝐷cat 𝑅))))
25 funcres2b.2 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹𝑥)𝑅(𝐹𝑦)))
2625adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹𝑥)𝑅(𝐹𝑦)))
2726frnd 6696 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦)))
2812ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑅 ∈ (Subcat‘𝐷))
2913ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑅 Fn (𝑆 × 𝑆))
30 eqid 2729 . . . . . . . . . . . . . . . 16 (Hom ‘𝐷) = (Hom ‘𝐷)
3111ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝐹:𝐴𝑆)
32 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
3331, 32ffvelcdmd 7057 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ 𝑆)
34 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
3531, 34ffvelcdmd 7057 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ 𝑆)
3628, 29, 30, 33, 35subcss2 17805 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)𝑅(𝐹𝑦)) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
3727, 36sstrd 3957 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
3837, 272thd 265 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦))))
3938anbi2d 630 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦)))))
40 df-f 6515 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
41 df-f 6515 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝑅(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦))))
4239, 40, 413bitr4g 314 . . . . . . . . . . 11 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝑅(𝐹𝑦))))
4317, 14, 19, 13, 15reschom 17792 . . . . . . . . . . . . . 14 (𝜑𝑅 = (Hom ‘(𝐷cat 𝑅)))
4443ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
4544oveqd 7404 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)𝑅(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))
4645feq3d 6673 . . . . . . . . . . 11 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝑅(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
4742, 46bitrd 279 . . . . . . . . . 10 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
4847ralrimivva 3180 . . . . . . . . 9 ((𝜑𝐶 ∈ Cat) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
49 fveq2 6858 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
50 df-ov 7390 . . . . . . . . . . . . . 14 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
5149, 50eqtr4di 2782 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
52 vex 3451 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
53 vex 3451 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5452, 53op1std 7978 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
5554fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑧)) = (𝐹𝑥))
5652, 53op2ndd 7979 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
5756fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑧)) = (𝐹𝑦))
5855, 57oveq12d 7405 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
59 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
60 df-ov 7390 . . . . . . . . . . . . . . 15 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
6159, 60eqtr4di 2782 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
6258, 61oveq12d 7405 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
6351, 62eleq12d 2822 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↑m (𝑥𝐻𝑦))))
64 ovex 7420 . . . . . . . . . . . . 13 ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ∈ V
65 ovex 7420 . . . . . . . . . . . . 13 (𝑥𝐻𝑦) ∈ V
6664, 65elmap 8844 . . . . . . . . . . . 12 ((𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↑m (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6763, 66bitrdi 287 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
6855, 57oveq12d 7405 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) = ((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))
6968, 61oveq12d 7405 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) = (((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ↑m (𝑥𝐻𝑦)))
7051, 69eleq12d 2822 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ↑m (𝑥𝐻𝑦))))
71 ovex 7420 . . . . . . . . . . . . 13 ((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ∈ V
7271, 65elmap 8844 . . . . . . . . . . . 12 ((𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ↑m (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))
7370, 72bitrdi 287 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
7467, 73bibi12d 345 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))))
7574ralxp 5805 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 × 𝐴)((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
7648, 75sylibr 234 . . . . . . . 8 ((𝜑𝐶 ∈ Cat) → ∀𝑧 ∈ (𝐴 × 𝐴)((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
77 ralbi 3085 . . . . . . . 8 (∀𝑧 ∈ (𝐴 × 𝐴)((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))) → (∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
7876, 77syl 17 . . . . . . 7 ((𝜑𝐶 ∈ Cat) → (∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
79783anbi3d 1444 . . . . . 6 ((𝜑𝐶 ∈ Cat) → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))))
80 elixp2 8874 . . . . . 6 (𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
81 elixp2 8874 . . . . . 6 (𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
8279, 80, 813bitr4g 314 . . . . 5 ((𝜑𝐶 ∈ Cat) → (𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ↔ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧))))
8312ad2antrr 726 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → 𝑅 ∈ (Subcat‘𝐷))
8413ad2antrr 726 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → 𝑅 Fn (𝑆 × 𝑆))
85 eqid 2729 . . . . . . . . 9 (Id‘𝐷) = (Id‘𝐷)
8611adantr 480 . . . . . . . . . 10 ((𝜑𝐶 ∈ Cat) → 𝐹:𝐴𝑆)
8786ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝑆)
8817, 83, 84, 85, 87subcid 17809 . . . . . . . 8 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → ((Id‘𝐷)‘(𝐹𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)))
8988eqeq2d 2740 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ↔ ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥))))
90 eqid 2729 . . . . . . . . . . . . . 14 (comp‘𝐷) = (comp‘𝐷)
9117, 14, 19, 13, 15, 90rescco 17794 . . . . . . . . . . . . 13 (𝜑 → (comp‘𝐷) = (comp‘(𝐷cat 𝑅)))
9291ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (comp‘𝐷) = (comp‘(𝐷cat 𝑅)))
9392oveqd 7404 . . . . . . . . . . 11 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧)) = (⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧)))
9493oveqd 7404 . . . . . . . . . 10 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
9594eqeq2d 2740 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) ↔ ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))
96952ralbidv 3201 . . . . . . . 8 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))
97962ralbidv 3201 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) ↔ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))
9889, 97anbi12d 632 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → ((((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))) ↔ (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))))
9998ralbidva 3154 . . . . 5 ((𝜑𝐶 ∈ Cat) → (∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))) ↔ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))))
10024, 82, 993anbi123d 1438 . . . 4 ((𝜑𝐶 ∈ Cat) → ((𝐹:𝐴⟶(Base‘𝐷) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))) ↔ (𝐹:𝐴⟶(Base‘(𝐷cat 𝑅)) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))))
101 funcres2b.a . . . . 5 𝐴 = (Base‘𝐶)
102 funcres2b.h . . . . 5 𝐻 = (Hom ‘𝐶)
103 eqid 2729 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
104 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
105 simpr 484 . . . . 5 ((𝜑𝐶 ∈ Cat) → 𝐶 ∈ Cat)
10619adantr 480 . . . . 5 ((𝜑𝐶 ∈ Cat) → 𝐷 ∈ Cat)
107101, 14, 102, 30, 103, 85, 104, 90, 105, 106isfunc 17826 . . . 4 ((𝜑𝐶 ∈ Cat) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹:𝐴⟶(Base‘𝐷) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))))
108 eqid 2729 . . . . 5 (Base‘(𝐷cat 𝑅)) = (Base‘(𝐷cat 𝑅))
109 eqid 2729 . . . . 5 (Hom ‘(𝐷cat 𝑅)) = (Hom ‘(𝐷cat 𝑅))
110 eqid 2729 . . . . 5 (Id‘(𝐷cat 𝑅)) = (Id‘(𝐷cat 𝑅))
111 eqid 2729 . . . . 5 (comp‘(𝐷cat 𝑅)) = (comp‘(𝐷cat 𝑅))
11217, 12subccat 17810 . . . . . 6 (𝜑 → (𝐷cat 𝑅) ∈ Cat)
113112adantr 480 . . . . 5 ((𝜑𝐶 ∈ Cat) → (𝐷cat 𝑅) ∈ Cat)
114101, 108, 102, 109, 103, 110, 104, 111, 105, 113isfunc 17826 . . . 4 ((𝜑𝐶 ∈ Cat) → (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺 ↔ (𝐹:𝐴⟶(Base‘(𝐷cat 𝑅)) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))))
115100, 107, 1143bitr4d 311 . . 3 ((𝜑𝐶 ∈ Cat) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺))
116115ex 412 . 2 (𝜑 → (𝐶 ∈ Cat → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺)))
1175, 10, 116pm5.21ndd 379 1 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  cop 4595   class class class wbr 5107   × cxp 5636  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  m cmap 8799  Xcixp 8870  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  cat cresc 17770  Subcatcsubc 17771   Func cfunc 17816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-homf 17631  df-ssc 17772  df-resc 17773  df-subc 17774  df-func 17820
This theorem is referenced by:  funcres2  17860  funcres2c  17865  fthres2b  17894
  Copyright terms: Public domain W3C validator