MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcres2b Structured version   Visualization version   GIF version

Theorem funcres2b 16871
Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
funcres2b.a 𝐴 = (Base‘𝐶)
funcres2b.h 𝐻 = (Hom ‘𝐶)
funcres2b.r (𝜑𝑅 ∈ (Subcat‘𝐷))
funcres2b.s (𝜑𝑅 Fn (𝑆 × 𝑆))
funcres2b.1 (𝜑𝐹:𝐴𝑆)
funcres2b.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹𝑥)𝑅(𝐹𝑦)))
Assertion
Ref Expression
funcres2b (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem funcres2b
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4844 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
2 funcrcl 16837 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
31, 2sylbi 209 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
43simpld 489 . . 3 (𝐹(𝐶 Func 𝐷)𝐺𝐶 ∈ Cat)
54a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐶 ∈ Cat))
6 df-br 4844 . . . . 5 (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func (𝐷cat 𝑅)))
7 funcrcl 16837 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func (𝐷cat 𝑅)) → (𝐶 ∈ Cat ∧ (𝐷cat 𝑅) ∈ Cat))
86, 7sylbi 209 . . . 4 (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺 → (𝐶 ∈ Cat ∧ (𝐷cat 𝑅) ∈ Cat))
98simpld 489 . . 3 (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺𝐶 ∈ Cat)
109a1i 11 . 2 (𝜑 → (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺𝐶 ∈ Cat))
11 funcres2b.1 . . . . . . . 8 (𝜑𝐹:𝐴𝑆)
12 funcres2b.r . . . . . . . . 9 (𝜑𝑅 ∈ (Subcat‘𝐷))
13 funcres2b.s . . . . . . . . 9 (𝜑𝑅 Fn (𝑆 × 𝑆))
14 eqid 2799 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
1512, 13, 14subcss1 16816 . . . . . . . 8 (𝜑𝑆 ⊆ (Base‘𝐷))
1611, 15fssd 6270 . . . . . . 7 (𝜑𝐹:𝐴⟶(Base‘𝐷))
17 eqid 2799 . . . . . . . . . 10 (𝐷cat 𝑅) = (𝐷cat 𝑅)
18 subcrcl 16790 . . . . . . . . . . 11 (𝑅 ∈ (Subcat‘𝐷) → 𝐷 ∈ Cat)
1912, 18syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
2017, 14, 19, 13, 15rescbas 16803 . . . . . . . . 9 (𝜑𝑆 = (Base‘(𝐷cat 𝑅)))
2120feq3d 6243 . . . . . . . 8 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘(𝐷cat 𝑅))))
2211, 21mpbid 224 . . . . . . 7 (𝜑𝐹:𝐴⟶(Base‘(𝐷cat 𝑅)))
2316, 222thd 257 . . . . . 6 (𝜑 → (𝐹:𝐴⟶(Base‘𝐷) ↔ 𝐹:𝐴⟶(Base‘(𝐷cat 𝑅))))
2423adantr 473 . . . . 5 ((𝜑𝐶 ∈ Cat) → (𝐹:𝐴⟶(Base‘𝐷) ↔ 𝐹:𝐴⟶(Base‘(𝐷cat 𝑅))))
25 funcres2b.2 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹𝑥)𝑅(𝐹𝑦)))
2625adantlr 707 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝐺𝑦):𝑌⟶((𝐹𝑥)𝑅(𝐹𝑦)))
2726frnd 6263 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦)))
2812ad2antrr 718 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑅 ∈ (Subcat‘𝐷))
2913ad2antrr 718 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑅 Fn (𝑆 × 𝑆))
30 eqid 2799 . . . . . . . . . . . . . . . 16 (Hom ‘𝐷) = (Hom ‘𝐷)
3111ad2antrr 718 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝐹:𝐴𝑆)
32 simprl 788 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑥𝐴)
3331, 32ffvelrnd 6586 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑥) ∈ 𝑆)
34 simprr 790 . . . . . . . . . . . . . . . . 17 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑦𝐴)
3531, 34ffvelrnd 6586 . . . . . . . . . . . . . . . 16 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (𝐹𝑦) ∈ 𝑆)
3628, 29, 30, 33, 35subcss2 16817 . . . . . . . . . . . . . . 15 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)𝑅(𝐹𝑦)) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
3727, 36sstrd 3808 . . . . . . . . . . . . . 14 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
3837, 272thd 257 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦))))
3938anbi2d 623 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦)))))
40 df-f 6105 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
41 df-f 6105 . . . . . . . . . . . 12 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝑅(𝐹𝑦)) ↔ ((𝑥𝐺𝑦) Fn (𝑥𝐻𝑦) ∧ ran (𝑥𝐺𝑦) ⊆ ((𝐹𝑥)𝑅(𝐹𝑦))))
4239, 40, 413bitr4g 306 . . . . . . . . . . 11 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝑅(𝐹𝑦))))
4317, 14, 19, 13, 15reschom 16804 . . . . . . . . . . . . . 14 (𝜑𝑅 = (Hom ‘(𝐷cat 𝑅)))
4443ad2antrr 718 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → 𝑅 = (Hom ‘(𝐷cat 𝑅)))
4544oveqd 6895 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥)𝑅(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))
4645feq3d 6243 . . . . . . . . . . 11 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)𝑅(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
4742, 46bitrd 271 . . . . . . . . . 10 (((𝜑𝐶 ∈ Cat) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
4847ralrimivva 3152 . . . . . . . . 9 ((𝜑𝐶 ∈ Cat) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
49 fveq2 6411 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
50 df-ov 6881 . . . . . . . . . . . . . 14 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
5149, 50syl6eqr 2851 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝑥𝐺𝑦))
52 vex 3388 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
53 vex 3388 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
5452, 53op1std 7411 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
5554fveq2d 6415 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑧)) = (𝐹𝑥))
5652, 53op2ndd 7412 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
5756fveq2d 6415 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑧)) = (𝐹𝑦))
5855, 57oveq12d 6896 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
59 fveq2 6411 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝐻‘⟨𝑥, 𝑦⟩))
60 df-ov 6881 . . . . . . . . . . . . . . 15 (𝑥𝐻𝑦) = (𝐻‘⟨𝑥, 𝑦⟩)
6159, 60syl6eqr 2851 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐻𝑧) = (𝑥𝐻𝑦))
6258, 61oveq12d 6896 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) = (((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↑𝑚 (𝑥𝐻𝑦)))
6351, 62eleq12d 2872 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↑𝑚 (𝑥𝐻𝑦))))
64 ovex 6910 . . . . . . . . . . . . 13 ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ∈ V
65 ovex 6910 . . . . . . . . . . . . 13 (𝑥𝐻𝑦) ∈ V
6664, 65elmap 8124 . . . . . . . . . . . 12 ((𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↑𝑚 (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
6763, 66syl6bb 279 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
6855, 57oveq12d 6896 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) = ((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))
6968, 61oveq12d 6896 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) = (((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ↑𝑚 (𝑥𝐻𝑦)))
7051, 69eleq12d 2872 . . . . . . . . . . . 12 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ↑𝑚 (𝑥𝐻𝑦))))
71 ovex 6910 . . . . . . . . . . . . 13 ((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ∈ V
7271, 65elmap 8124 . . . . . . . . . . . 12 ((𝑥𝐺𝑦) ∈ (((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)) ↑𝑚 (𝑥𝐻𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))
7370, 72syl6bb 279 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
7467, 73bibi12d 337 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → (((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦)))))
7574ralxp 5467 . . . . . . . . 9 (∀𝑧 ∈ (𝐴 × 𝐴)((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ (𝑥𝐺𝑦):(𝑥𝐻𝑦)⟶((𝐹𝑥)(Hom ‘(𝐷cat 𝑅))(𝐹𝑦))))
7648, 75sylibr 226 . . . . . . . 8 ((𝜑𝐶 ∈ Cat) → ∀𝑧 ∈ (𝐴 × 𝐴)((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))))
77 ralbi 3249 . . . . . . . 8 (∀𝑧 ∈ (𝐴 × 𝐴)((𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))) → (∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))))
7876, 77syl 17 . . . . . . 7 ((𝜑𝐶 ∈ Cat) → (∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))))
79783anbi3d 1567 . . . . . 6 ((𝜑𝐶 ∈ Cat) → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)))))
80 elixp2 8152 . . . . . 6 (𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))))
81 elixp2 8152 . . . . . 6 (𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐴 × 𝐴) ∧ ∀𝑧 ∈ (𝐴 × 𝐴)(𝐺𝑧) ∈ (((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))))
8279, 80, 813bitr4g 306 . . . . 5 ((𝜑𝐶 ∈ Cat) → (𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ↔ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧))))
8312ad2antrr 718 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → 𝑅 ∈ (Subcat‘𝐷))
8413ad2antrr 718 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → 𝑅 Fn (𝑆 × 𝑆))
85 eqid 2799 . . . . . . . . 9 (Id‘𝐷) = (Id‘𝐷)
8611adantr 473 . . . . . . . . . 10 ((𝜑𝐶 ∈ Cat) → 𝐹:𝐴𝑆)
8786ffvelrnda 6585 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝑆)
8817, 83, 84, 85, 87subcid 16821 . . . . . . . 8 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → ((Id‘𝐷)‘(𝐹𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)))
8988eqeq2d 2809 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ↔ ((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥))))
90 eqid 2799 . . . . . . . . . . . . . 14 (comp‘𝐷) = (comp‘𝐷)
9117, 14, 19, 13, 15, 90rescco 16806 . . . . . . . . . . . . 13 (𝜑 → (comp‘𝐷) = (comp‘(𝐷cat 𝑅)))
9291ad2antrr 718 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (comp‘𝐷) = (comp‘(𝐷cat 𝑅)))
9392oveqd 6895 . . . . . . . . . . 11 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧)) = (⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧)))
9493oveqd 6895 . . . . . . . . . 10 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))
9594eqeq2d 2809 . . . . . . . . 9 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) ↔ ((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))
96952ralbidv 3170 . . . . . . . 8 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))
97962ralbidv 3170 . . . . . . 7 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → (∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)) ↔ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))
9889, 97anbi12d 625 . . . . . 6 (((𝜑𝐶 ∈ Cat) ∧ 𝑥𝐴) → ((((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))) ↔ (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))))
9998ralbidva 3166 . . . . 5 ((𝜑𝐶 ∈ Cat) → (∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))) ↔ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))))
10024, 82, 993anbi123d 1561 . . . 4 ((𝜑𝐶 ∈ Cat) → ((𝐹:𝐴⟶(Base‘𝐷) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓)))) ↔ (𝐹:𝐴⟶(Base‘(𝐷cat 𝑅)) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))))
101 funcres2b.a . . . . 5 𝐴 = (Base‘𝐶)
102 funcres2b.h . . . . 5 𝐻 = (Hom ‘𝐶)
103 eqid 2799 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
104 eqid 2799 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
105 simpr 478 . . . . 5 ((𝜑𝐶 ∈ Cat) → 𝐶 ∈ Cat)
10619adantr 473 . . . . 5 ((𝜑𝐶 ∈ Cat) → 𝐷 ∈ Cat)
107101, 14, 102, 30, 103, 85, 104, 90, 105, 106isfunc 16838 . . . 4 ((𝜑𝐶 ∈ Cat) → (𝐹(𝐶 Func 𝐷)𝐺 ↔ (𝐹:𝐴⟶(Base‘𝐷) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘𝐷)(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐷)‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))))
108 eqid 2799 . . . . 5 (Base‘(𝐷cat 𝑅)) = (Base‘(𝐷cat 𝑅))
109 eqid 2799 . . . . 5 (Hom ‘(𝐷cat 𝑅)) = (Hom ‘(𝐷cat 𝑅))
110 eqid 2799 . . . . 5 (Id‘(𝐷cat 𝑅)) = (Id‘(𝐷cat 𝑅))
111 eqid 2799 . . . . 5 (comp‘(𝐷cat 𝑅)) = (comp‘(𝐷cat 𝑅))
11217, 12subccat 16822 . . . . . 6 (𝜑 → (𝐷cat 𝑅) ∈ Cat)
113112adantr 473 . . . . 5 ((𝜑𝐶 ∈ Cat) → (𝐷cat 𝑅) ∈ Cat)
114101, 108, 102, 109, 103, 110, 104, 111, 105, 113isfunc 16838 . . . 4 ((𝜑𝐶 ∈ Cat) → (𝐹(𝐶 Func (𝐷cat 𝑅))𝐺 ↔ (𝐹:𝐴⟶(Base‘(𝐷cat 𝑅)) ∧ 𝐺X𝑧 ∈ (𝐴 × 𝐴)(((𝐹‘(1st𝑧))(Hom ‘(𝐷cat 𝑅))(𝐹‘(2nd𝑧))) ↑𝑚 (𝐻𝑧)) ∧ ∀𝑥𝐴 (((𝑥𝐺𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷cat 𝑅))‘(𝐹𝑥)) ∧ ∀𝑦𝐴𝑧𝐴𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦𝐺𝑧)‘𝑔)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘(𝐷cat 𝑅))(𝐹𝑧))((𝑥𝐺𝑦)‘𝑓))))))
115100, 107, 1143bitr4d 303 . . 3 ((𝜑𝐶 ∈ Cat) → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺))
116115ex 402 . 2 (𝜑 → (𝐶 ∈ Cat → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺)))
1175, 10, 116pm5.21ndd 371 1 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func (𝐷cat 𝑅))𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  wss 3769  cop 4374   class class class wbr 4843   × cxp 5310  ran crn 5313   Fn wfn 6096  wf 6097  cfv 6101  (class class class)co 6878  1st c1st 7399  2nd c2nd 7400  𝑚 cmap 8095  Xcixp 8148  Basecbs 16184  Hom chom 16278  compcco 16279  Catccat 16639  Idccid 16640  cat cresc 16782  Subcatcsubc 16783   Func cfunc 16828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-hom 16291  df-cco 16292  df-cat 16643  df-cid 16644  df-homf 16645  df-ssc 16784  df-resc 16785  df-subc 16786  df-func 16832
This theorem is referenced by:  funcres2  16872  funcres2c  16875  fthres2b  16904
  Copyright terms: Public domain W3C validator