MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddass Structured version   Visualization version   GIF version

Theorem naddass 8695
Description: Natural ordinal addition is associative. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))

Proof of Theorem naddass
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7416 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑏) = (𝑥 +no 𝑏))
21oveq1d 7424 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑏) +no 𝑐))
3 oveq1 7416 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑏 +no 𝑐)))
42, 3eqeq12d 2749 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐))))
5 oveq2 7417 . . . 4 (𝑏 = 𝑦 → (𝑥 +no 𝑏) = (𝑥 +no 𝑦))
65oveq1d 7424 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑐))
7 oveq1 7416 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑐) = (𝑦 +no 𝑐))
87oveq2d 7425 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑐)))
96, 8eqeq12d 2749 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐))))
10 oveq2 7417 . . 3 (𝑐 = 𝑧 → ((𝑥 +no 𝑦) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑧))
11 oveq2 7417 . . . 4 (𝑐 = 𝑧 → (𝑦 +no 𝑐) = (𝑦 +no 𝑧))
1211oveq2d 7425 . . 3 (𝑐 = 𝑧 → (𝑥 +no (𝑦 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑧)))
1310, 12eqeq12d 2749 . 2 (𝑐 = 𝑧 → (((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
14 oveq1 7416 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑦) = (𝑥 +no 𝑦))
1514oveq1d 7424 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑦) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
16 oveq1 7416 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑦 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
1715, 16eqeq12d 2749 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
18 oveq2 7417 . . . 4 (𝑏 = 𝑦 → (𝑎 +no 𝑏) = (𝑎 +no 𝑦))
1918oveq1d 7424 . . 3 (𝑏 = 𝑦 → ((𝑎 +no 𝑏) +no 𝑧) = ((𝑎 +no 𝑦) +no 𝑧))
20 oveq1 7416 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑧) = (𝑦 +no 𝑧))
2120oveq2d 7425 . . 3 (𝑏 = 𝑦 → (𝑎 +no (𝑏 +no 𝑧)) = (𝑎 +no (𝑦 +no 𝑧)))
2219, 21eqeq12d 2749 . 2 (𝑏 = 𝑦 → (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
235oveq1d 7424 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
2420oveq2d 7425 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
2523, 24eqeq12d 2749 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
26 oveq2 7417 . . 3 (𝑐 = 𝑧 → ((𝑎 +no 𝑦) +no 𝑐) = ((𝑎 +no 𝑦) +no 𝑧))
2711oveq2d 7425 . . 3 (𝑐 = 𝑧 → (𝑎 +no (𝑦 +no 𝑐)) = (𝑎 +no (𝑦 +no 𝑧)))
2826, 27eqeq12d 2749 . 2 (𝑐 = 𝑧 → (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
29 oveq1 7416 . . . 4 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
3029oveq1d 7424 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝑏) +no 𝑐))
31 oveq1 7416 . . 3 (𝑎 = 𝐴 → (𝑎 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝑏 +no 𝑐)))
3230, 31eqeq12d 2749 . 2 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐))))
33 oveq2 7417 . . . 4 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
3433oveq1d 7424 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐))
35 oveq1 7416 . . . 4 (𝑏 = 𝐵 → (𝑏 +no 𝑐) = (𝐵 +no 𝑐))
3635oveq2d 7425 . . 3 (𝑏 = 𝐵 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝑐)))
3734, 36eqeq12d 2749 . 2 (𝑏 = 𝐵 → (((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐))))
38 oveq2 7417 . . 3 (𝑐 = 𝐶 → ((𝐴 +no 𝐵) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝐶))
39 oveq2 7417 . . . 4 (𝑐 = 𝐶 → (𝐵 +no 𝑐) = (𝐵 +no 𝐶))
4039oveq2d 7425 . . 3 (𝑐 = 𝐶 → (𝐴 +no (𝐵 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝐶)))
4138, 40eqeq12d 2749 . 2 (𝑐 = 𝐶 → (((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶))))
42 simpr21 1261 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)))
43 eleq1 2822 . . . . . . . . 9 (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4443ralimi 3084 . . . . . . . 8 (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → ∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
45 ralbi 3104 . . . . . . . 8 (∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4642, 44, 453syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
47 simpr23 1263 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)))
48 eleq1 2822 . . . . . . . . 9 (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
4948ralimi 3084 . . . . . . . 8 (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → ∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
50 ralbi 3104 . . . . . . . 8 (∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
5147, 49, 503syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
52 simpr3 1197 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))
53 eleq1 2822 . . . . . . . . 9 (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5453ralimi 3084 . . . . . . . 8 (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → ∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
55 ralbi 3104 . . . . . . . 8 (∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5652, 54, 553syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5746, 51, 563anbi123d 1437 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤) ↔ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)))
5857rabbidv 3441 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
5958inteqd 4956 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
60 naddasslem1 8693 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
6160adantr 482 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
62 naddasslem2 8694 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6362adantr 482 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6459, 61, 633eqtr4d 2783 . . 3 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)))
6564ex 414 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐))))
664, 9, 13, 17, 22, 25, 28, 32, 37, 41, 65on3ind 8669 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  {crab 3433   cint 4951  Oncon0 6365  (class class class)co 7409   +no cnadd 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-frecs 8266  df-nadd 8665
This theorem is referenced by:  nadd32  8696  nadd4  8697  naddwordnexlem4  42152
  Copyright terms: Public domain W3C validator