MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddass Structured version   Visualization version   GIF version

Theorem naddass 8752
Description: Natural ordinal addition is associative. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))

Proof of Theorem naddass
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑏) = (𝑥 +no 𝑏))
21oveq1d 7463 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑏) +no 𝑐))
3 oveq1 7455 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑏 +no 𝑐)))
42, 3eqeq12d 2756 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐))))
5 oveq2 7456 . . . 4 (𝑏 = 𝑦 → (𝑥 +no 𝑏) = (𝑥 +no 𝑦))
65oveq1d 7463 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑐))
7 oveq1 7455 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑐) = (𝑦 +no 𝑐))
87oveq2d 7464 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑐)))
96, 8eqeq12d 2756 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐))))
10 oveq2 7456 . . 3 (𝑐 = 𝑧 → ((𝑥 +no 𝑦) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑧))
11 oveq2 7456 . . . 4 (𝑐 = 𝑧 → (𝑦 +no 𝑐) = (𝑦 +no 𝑧))
1211oveq2d 7464 . . 3 (𝑐 = 𝑧 → (𝑥 +no (𝑦 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑧)))
1310, 12eqeq12d 2756 . 2 (𝑐 = 𝑧 → (((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
14 oveq1 7455 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑦) = (𝑥 +no 𝑦))
1514oveq1d 7463 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑦) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
16 oveq1 7455 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑦 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
1715, 16eqeq12d 2756 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
18 oveq2 7456 . . . 4 (𝑏 = 𝑦 → (𝑎 +no 𝑏) = (𝑎 +no 𝑦))
1918oveq1d 7463 . . 3 (𝑏 = 𝑦 → ((𝑎 +no 𝑏) +no 𝑧) = ((𝑎 +no 𝑦) +no 𝑧))
20 oveq1 7455 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑧) = (𝑦 +no 𝑧))
2120oveq2d 7464 . . 3 (𝑏 = 𝑦 → (𝑎 +no (𝑏 +no 𝑧)) = (𝑎 +no (𝑦 +no 𝑧)))
2219, 21eqeq12d 2756 . 2 (𝑏 = 𝑦 → (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
235oveq1d 7463 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
2420oveq2d 7464 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
2523, 24eqeq12d 2756 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
26 oveq2 7456 . . 3 (𝑐 = 𝑧 → ((𝑎 +no 𝑦) +no 𝑐) = ((𝑎 +no 𝑦) +no 𝑧))
2711oveq2d 7464 . . 3 (𝑐 = 𝑧 → (𝑎 +no (𝑦 +no 𝑐)) = (𝑎 +no (𝑦 +no 𝑧)))
2826, 27eqeq12d 2756 . 2 (𝑐 = 𝑧 → (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
29 oveq1 7455 . . . 4 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
3029oveq1d 7463 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝑏) +no 𝑐))
31 oveq1 7455 . . 3 (𝑎 = 𝐴 → (𝑎 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝑏 +no 𝑐)))
3230, 31eqeq12d 2756 . 2 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐))))
33 oveq2 7456 . . . 4 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
3433oveq1d 7463 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐))
35 oveq1 7455 . . . 4 (𝑏 = 𝐵 → (𝑏 +no 𝑐) = (𝐵 +no 𝑐))
3635oveq2d 7464 . . 3 (𝑏 = 𝐵 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝑐)))
3734, 36eqeq12d 2756 . 2 (𝑏 = 𝐵 → (((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐))))
38 oveq2 7456 . . 3 (𝑐 = 𝐶 → ((𝐴 +no 𝐵) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝐶))
39 oveq2 7456 . . . 4 (𝑐 = 𝐶 → (𝐵 +no 𝑐) = (𝐵 +no 𝐶))
4039oveq2d 7464 . . 3 (𝑐 = 𝐶 → (𝐴 +no (𝐵 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝐶)))
4138, 40eqeq12d 2756 . 2 (𝑐 = 𝐶 → (((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶))))
42 simpr21 1260 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)))
43 eleq1 2832 . . . . . . . . 9 (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4443ralimi 3089 . . . . . . . 8 (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → ∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
45 ralbi 3109 . . . . . . . 8 (∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4642, 44, 453syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
47 simpr23 1262 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)))
48 eleq1 2832 . . . . . . . . 9 (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
4948ralimi 3089 . . . . . . . 8 (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → ∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
50 ralbi 3109 . . . . . . . 8 (∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
5147, 49, 503syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
52 simpr3 1196 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))
53 eleq1 2832 . . . . . . . . 9 (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5453ralimi 3089 . . . . . . . 8 (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → ∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
55 ralbi 3109 . . . . . . . 8 (∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5652, 54, 553syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5746, 51, 563anbi123d 1436 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤) ↔ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)))
5857rabbidv 3451 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
5958inteqd 4975 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
60 naddasslem1 8750 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
6160adantr 480 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
62 naddasslem2 8751 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6362adantr 480 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6459, 61, 633eqtr4d 2790 . . 3 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)))
6564ex 412 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐))))
664, 9, 13, 17, 22, 25, 28, 32, 37, 41, 65on3ind 8726 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443   cint 4970  Oncon0 6395  (class class class)co 7448   +no cnadd 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-nadd 8722
This theorem is referenced by:  nadd32  8753  nadd4  8754  naddwordnexlem4  43363
  Copyright terms: Public domain W3C validator