MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddass Structured version   Visualization version   GIF version

Theorem naddass 8641
Description: Natural ordinal addition is associative. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))

Proof of Theorem naddass
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7365 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑏) = (𝑥 +no 𝑏))
21oveq1d 7373 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑏) +no 𝑐))
3 oveq1 7365 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑏 +no 𝑐)))
42, 3eqeq12d 2753 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐))))
5 oveq2 7366 . . . 4 (𝑏 = 𝑦 → (𝑥 +no 𝑏) = (𝑥 +no 𝑦))
65oveq1d 7373 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑐))
7 oveq1 7365 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑐) = (𝑦 +no 𝑐))
87oveq2d 7374 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑐)))
96, 8eqeq12d 2753 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐))))
10 oveq2 7366 . . 3 (𝑐 = 𝑧 → ((𝑥 +no 𝑦) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑧))
11 oveq2 7366 . . . 4 (𝑐 = 𝑧 → (𝑦 +no 𝑐) = (𝑦 +no 𝑧))
1211oveq2d 7374 . . 3 (𝑐 = 𝑧 → (𝑥 +no (𝑦 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑧)))
1310, 12eqeq12d 2753 . 2 (𝑐 = 𝑧 → (((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
14 oveq1 7365 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑦) = (𝑥 +no 𝑦))
1514oveq1d 7373 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑦) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
16 oveq1 7365 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑦 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
1715, 16eqeq12d 2753 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
18 oveq2 7366 . . . 4 (𝑏 = 𝑦 → (𝑎 +no 𝑏) = (𝑎 +no 𝑦))
1918oveq1d 7373 . . 3 (𝑏 = 𝑦 → ((𝑎 +no 𝑏) +no 𝑧) = ((𝑎 +no 𝑦) +no 𝑧))
20 oveq1 7365 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑧) = (𝑦 +no 𝑧))
2120oveq2d 7374 . . 3 (𝑏 = 𝑦 → (𝑎 +no (𝑏 +no 𝑧)) = (𝑎 +no (𝑦 +no 𝑧)))
2219, 21eqeq12d 2753 . 2 (𝑏 = 𝑦 → (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
235oveq1d 7373 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
2420oveq2d 7374 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
2523, 24eqeq12d 2753 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
26 oveq2 7366 . . 3 (𝑐 = 𝑧 → ((𝑎 +no 𝑦) +no 𝑐) = ((𝑎 +no 𝑦) +no 𝑧))
2711oveq2d 7374 . . 3 (𝑐 = 𝑧 → (𝑎 +no (𝑦 +no 𝑐)) = (𝑎 +no (𝑦 +no 𝑧)))
2826, 27eqeq12d 2753 . 2 (𝑐 = 𝑧 → (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
29 oveq1 7365 . . . 4 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
3029oveq1d 7373 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝑏) +no 𝑐))
31 oveq1 7365 . . 3 (𝑎 = 𝐴 → (𝑎 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝑏 +no 𝑐)))
3230, 31eqeq12d 2753 . 2 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐))))
33 oveq2 7366 . . . 4 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
3433oveq1d 7373 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐))
35 oveq1 7365 . . . 4 (𝑏 = 𝐵 → (𝑏 +no 𝑐) = (𝐵 +no 𝑐))
3635oveq2d 7374 . . 3 (𝑏 = 𝐵 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝑐)))
3734, 36eqeq12d 2753 . 2 (𝑏 = 𝐵 → (((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐))))
38 oveq2 7366 . . 3 (𝑐 = 𝐶 → ((𝐴 +no 𝐵) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝐶))
39 oveq2 7366 . . . 4 (𝑐 = 𝐶 → (𝐵 +no 𝑐) = (𝐵 +no 𝐶))
4039oveq2d 7374 . . 3 (𝑐 = 𝐶 → (𝐴 +no (𝐵 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝐶)))
4138, 40eqeq12d 2753 . 2 (𝑐 = 𝐶 → (((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶))))
42 simpr21 1261 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)))
43 eleq1 2826 . . . . . . . . 9 (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4443ralimi 3087 . . . . . . . 8 (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → ∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
45 ralbi 3107 . . . . . . . 8 (∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4642, 44, 453syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
47 simpr23 1263 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)))
48 eleq1 2826 . . . . . . . . 9 (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
4948ralimi 3087 . . . . . . . 8 (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → ∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
50 ralbi 3107 . . . . . . . 8 (∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
5147, 49, 503syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
52 simpr3 1197 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))
53 eleq1 2826 . . . . . . . . 9 (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5453ralimi 3087 . . . . . . . 8 (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → ∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
55 ralbi 3107 . . . . . . . 8 (∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5652, 54, 553syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5746, 51, 563anbi123d 1437 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤) ↔ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)))
5857rabbidv 3416 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
5958inteqd 4913 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
60 naddasslem1 8639 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
6160adantr 482 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
62 naddasslem2 8640 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6362adantr 482 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6459, 61, 633eqtr4d 2787 . . 3 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)))
6564ex 414 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐))))
664, 9, 13, 17, 22, 25, 28, 32, 37, 41, 65on3ind 8617 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  {crab 3408   cint 4908  Oncon0 6318  (class class class)co 7358   +no cnadd 8612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-ot 4596  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-frecs 8213  df-nadd 8613
This theorem is referenced by:  nadd32  8642  nadd4  8643
  Copyright terms: Public domain W3C validator