MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddass Structured version   Visualization version   GIF version

Theorem naddass 8723
Description: Natural ordinal addition is associative. (Contributed by Scott Fenton, 20-Jan-2025.)
Assertion
Ref Expression
naddass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))

Proof of Theorem naddass
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7433 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑏) = (𝑥 +no 𝑏))
21oveq1d 7441 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑏) +no 𝑐))
3 oveq1 7433 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑏 +no 𝑐)))
42, 3eqeq12d 2744 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐))))
5 oveq2 7434 . . . 4 (𝑏 = 𝑦 → (𝑥 +no 𝑏) = (𝑥 +no 𝑦))
65oveq1d 7441 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑐))
7 oveq1 7433 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑐) = (𝑦 +no 𝑐))
87oveq2d 7442 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑐)))
96, 8eqeq12d 2744 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐))))
10 oveq2 7434 . . 3 (𝑐 = 𝑧 → ((𝑥 +no 𝑦) +no 𝑐) = ((𝑥 +no 𝑦) +no 𝑧))
11 oveq2 7434 . . . 4 (𝑐 = 𝑧 → (𝑦 +no 𝑐) = (𝑦 +no 𝑧))
1211oveq2d 7442 . . 3 (𝑐 = 𝑧 → (𝑥 +no (𝑦 +no 𝑐)) = (𝑥 +no (𝑦 +no 𝑧)))
1310, 12eqeq12d 2744 . 2 (𝑐 = 𝑧 → (((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
14 oveq1 7433 . . . 4 (𝑎 = 𝑥 → (𝑎 +no 𝑦) = (𝑥 +no 𝑦))
1514oveq1d 7441 . . 3 (𝑎 = 𝑥 → ((𝑎 +no 𝑦) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
16 oveq1 7433 . . 3 (𝑎 = 𝑥 → (𝑎 +no (𝑦 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
1715, 16eqeq12d 2744 . 2 (𝑎 = 𝑥 → (((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
18 oveq2 7434 . . . 4 (𝑏 = 𝑦 → (𝑎 +no 𝑏) = (𝑎 +no 𝑦))
1918oveq1d 7441 . . 3 (𝑏 = 𝑦 → ((𝑎 +no 𝑏) +no 𝑧) = ((𝑎 +no 𝑦) +no 𝑧))
20 oveq1 7433 . . . 4 (𝑏 = 𝑦 → (𝑏 +no 𝑧) = (𝑦 +no 𝑧))
2120oveq2d 7442 . . 3 (𝑏 = 𝑦 → (𝑎 +no (𝑏 +no 𝑧)) = (𝑎 +no (𝑦 +no 𝑧)))
2219, 21eqeq12d 2744 . 2 (𝑏 = 𝑦 → (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
235oveq1d 7441 . . 3 (𝑏 = 𝑦 → ((𝑥 +no 𝑏) +no 𝑧) = ((𝑥 +no 𝑦) +no 𝑧))
2420oveq2d 7442 . . 3 (𝑏 = 𝑦 → (𝑥 +no (𝑏 +no 𝑧)) = (𝑥 +no (𝑦 +no 𝑧)))
2523, 24eqeq12d 2744 . 2 (𝑏 = 𝑦 → (((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧)) ↔ ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧))))
26 oveq2 7434 . . 3 (𝑐 = 𝑧 → ((𝑎 +no 𝑦) +no 𝑐) = ((𝑎 +no 𝑦) +no 𝑧))
2711oveq2d 7442 . . 3 (𝑐 = 𝑧 → (𝑎 +no (𝑦 +no 𝑐)) = (𝑎 +no (𝑦 +no 𝑧)))
2826, 27eqeq12d 2744 . 2 (𝑐 = 𝑧 → (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) ↔ ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧))))
29 oveq1 7433 . . . 4 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
3029oveq1d 7441 . . 3 (𝑎 = 𝐴 → ((𝑎 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝑏) +no 𝑐))
31 oveq1 7433 . . 3 (𝑎 = 𝐴 → (𝑎 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝑏 +no 𝑐)))
3230, 31eqeq12d 2744 . 2 (𝑎 = 𝐴 → (((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐))))
33 oveq2 7434 . . . 4 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
3433oveq1d 7441 . . 3 (𝑏 = 𝐵 → ((𝐴 +no 𝑏) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝑐))
35 oveq1 7433 . . . 4 (𝑏 = 𝐵 → (𝑏 +no 𝑐) = (𝐵 +no 𝑐))
3635oveq2d 7442 . . 3 (𝑏 = 𝐵 → (𝐴 +no (𝑏 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝑐)))
3734, 36eqeq12d 2744 . 2 (𝑏 = 𝐵 → (((𝐴 +no 𝑏) +no 𝑐) = (𝐴 +no (𝑏 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐))))
38 oveq2 7434 . . 3 (𝑐 = 𝐶 → ((𝐴 +no 𝐵) +no 𝑐) = ((𝐴 +no 𝐵) +no 𝐶))
39 oveq2 7434 . . . 4 (𝑐 = 𝐶 → (𝐵 +no 𝑐) = (𝐵 +no 𝐶))
4039oveq2d 7442 . . 3 (𝑐 = 𝐶 → (𝐴 +no (𝐵 +no 𝑐)) = (𝐴 +no (𝐵 +no 𝐶)))
4138, 40eqeq12d 2744 . 2 (𝑐 = 𝐶 → (((𝐴 +no 𝐵) +no 𝑐) = (𝐴 +no (𝐵 +no 𝑐)) ↔ ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶))))
42 simpr21 1257 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)))
43 eleq1 2817 . . . . . . . . 9 (((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4443ralimi 3080 . . . . . . . 8 (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) → ∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
45 ralbi 3100 . . . . . . . 8 (∀𝑥𝑎 (((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
4642, 44, 453syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ↔ ∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤))
47 simpr23 1259 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)))
48 eleq1 2817 . . . . . . . . 9 (((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
4948ralimi 3080 . . . . . . . 8 (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐)) → ∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
50 ralbi 3100 . . . . . . . 8 (∀𝑦𝑏 (((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
5147, 49, 503syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ↔ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤))
52 simpr3 1193 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))
53 eleq1 2817 . . . . . . . . 9 (((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5453ralimi 3080 . . . . . . . 8 (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)) → ∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
55 ralbi 3100 . . . . . . . 8 (∀𝑧𝑐 (((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5652, 54, 553syl 18 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤 ↔ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤))
5746, 51, 563anbi123d 1432 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤) ↔ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)))
5857rabbidv 3438 . . . . 5 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
5958inteqd 4958 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)} = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
60 naddasslem1 8721 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
6160adantr 479 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = {𝑤 ∈ On ∣ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) ∈ 𝑤 ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) ∈ 𝑤 ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) ∈ 𝑤)})
62 naddasslem2 8722 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6362adantr 479 . . . 4 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → (𝑎 +no (𝑏 +no 𝑐)) = {𝑤 ∈ On ∣ (∀𝑥𝑎 (𝑥 +no (𝑏 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑦𝑏 (𝑎 +no (𝑦 +no 𝑐)) ∈ 𝑤 ∧ ∀𝑧𝑐 (𝑎 +no (𝑏 +no 𝑧)) ∈ 𝑤)})
6459, 61, 633eqtr4d 2778 . . 3 (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) ∧ ((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧)))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐)))
6564ex 411 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (((∀𝑥𝑎𝑦𝑏𝑧𝑐 ((𝑥 +no 𝑦) +no 𝑧) = (𝑥 +no (𝑦 +no 𝑧)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑥 +no 𝑦) +no 𝑐) = (𝑥 +no (𝑦 +no 𝑐)) ∧ ∀𝑥𝑎𝑧𝑐 ((𝑥 +no 𝑏) +no 𝑧) = (𝑥 +no (𝑏 +no 𝑧))) ∧ (∀𝑥𝑎 ((𝑥 +no 𝑏) +no 𝑐) = (𝑥 +no (𝑏 +no 𝑐)) ∧ ∀𝑦𝑏𝑧𝑐 ((𝑎 +no 𝑦) +no 𝑧) = (𝑎 +no (𝑦 +no 𝑧)) ∧ ∀𝑦𝑏 ((𝑎 +no 𝑦) +no 𝑐) = (𝑎 +no (𝑦 +no 𝑐))) ∧ ∀𝑧𝑐 ((𝑎 +no 𝑏) +no 𝑧) = (𝑎 +no (𝑏 +no 𝑧))) → ((𝑎 +no 𝑏) +no 𝑐) = (𝑎 +no (𝑏 +no 𝑐))))
664, 9, 13, 17, 22, 25, 28, 32, 37, 41, 65on3ind 8697 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +no 𝐵) +no 𝐶) = (𝐴 +no (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  {crab 3430   cint 4953  Oncon0 6374  (class class class)co 7426   +no cnadd 8692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-frecs 8293  df-nadd 8693
This theorem is referenced by:  nadd32  8724  nadd4  8725  naddwordnexlem4  42862
  Copyright terms: Public domain W3C validator