MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim0lt Structured version   Visualization version   GIF version

Theorem rlim0lt 15457
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim0.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim0.2 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
rlim0lt (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim0lt
StepHypRef Expression
1 rlim0.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim0.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 0cnd 11211 . . 3 (𝜑 → 0 ∈ ℂ)
41, 2, 3rlim2lt 15445 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥)))
5 subid1 11484 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
65fveq2d 6894 . . . . . . . 8 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
76breq1d 5157 . . . . . . 7 (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
87imbi2d 339 . . . . . 6 (𝐵 ∈ ℂ → ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
98ralimi 3081 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
10 ralbi 3101 . . . . 5 (∀𝑧𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
111, 9, 103syl 18 . . . 4 (𝜑 → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
1211rexbidv 3176 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
1312ralbidv 3175 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
144, 13bitrd 278 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104  wral 3059  wrex 3068  wss 3947   class class class wbr 5147  cmpt 5230  cfv 6542  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112   < clt 11252  cmin 11448  +crp 12978  abscabs 15185  𝑟 crli 15433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-rlim 15437
This theorem is referenced by:  divrcnv  15802  divlogrlim  26379  cxplim  26712  cxploglim  26718
  Copyright terms: Public domain W3C validator