![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlim0lt | Structured version Visualization version GIF version |
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
Ref | Expression |
---|---|
rlim0.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
rlim0.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
rlim0lt | ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlim0.1 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) | |
2 | rlim0.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | 0cnd 11211 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
4 | 1, 2, 3 | rlim2lt 15445 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥))) |
5 | subid1 11484 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
6 | 5 | fveq2d 6894 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
7 | 6 | breq1d 5157 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
8 | 7 | imbi2d 339 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) |
9 | 8 | ralimi 3081 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ → ∀𝑧 ∈ 𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) |
10 | ralbi 3101 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) | |
11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) |
12 | 11 | rexbidv 3176 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) |
13 | 12 | ralbidv 3175 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) |
14 | 4, 13 | bitrd 278 | 1 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 ⊆ wss 3947 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6542 (class class class)co 7411 ℂcc 11110 ℝcr 11111 0cc0 11112 < clt 11252 − cmin 11448 ℝ+crp 12978 abscabs 15185 ⇝𝑟 crli 15433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-rlim 15437 |
This theorem is referenced by: divrcnv 15802 divlogrlim 26379 cxplim 26712 cxploglim 26718 |
Copyright terms: Public domain | W3C validator |