MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim0lt Structured version   Visualization version   GIF version

Theorem rlim0lt 14869
Description: Use strictly less-than in place of less equal in the real limit predicate. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim0.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim0.2 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
rlim0lt (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim0lt
StepHypRef Expression
1 rlim0.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim0.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 0cnd 10637 . . 3 (𝜑 → 0 ∈ ℂ)
41, 2, 3rlim2lt 14857 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥)))
5 subid1 10909 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
65fveq2d 6677 . . . . . . . 8 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
76breq1d 5079 . . . . . . 7 (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
87imbi2d 343 . . . . . 6 (𝐵 ∈ ℂ → ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
98ralimi 3163 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
10 ralbi 3170 . . . . 5 (∀𝑧𝐴 ((𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
111, 9, 103syl 18 . . . 4 (𝜑 → (∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
1211rexbidv 3300 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
1312ralbidv 3200 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
144, 13bitrd 281 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦 < 𝑧 → (abs‘𝐵) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2113  wral 3141  wrex 3142  wss 3939   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540   < clt 10678  cmin 10873  +crp 12392  abscabs 14596  𝑟 crli 14845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-rlim 14849
This theorem is referenced by:  divrcnv  15210  divlogrlim  25221  cxplim  25552  cxploglim  25558
  Copyright terms: Public domain W3C validator