Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlim0 | Structured version Visualization version GIF version |
Description: Express the predicate 𝐵(𝑧) converges to 0. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
Ref | Expression |
---|---|
rlim0.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
rlim0.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
Ref | Expression |
---|---|
rlim0 | ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlim0.1 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) | |
2 | rlim0.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | 0cnd 11041 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
4 | 1, 2, 3 | rlim2 15277 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥))) |
5 | subid1 11314 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
6 | 5 | fveq2d 6815 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
7 | 6 | breq1d 5097 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
8 | 7 | imbi2d 340 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
9 | 8 | ralimi 3083 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ → ∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
10 | ralbi 3103 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) | |
11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
12 | 11 | rexbidv 3172 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
13 | 12 | ralbidv 3171 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
14 | 4, 13 | bitrd 278 | 1 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 ⊆ wss 3897 class class class wbr 5087 ↦ cmpt 5170 ‘cfv 6465 (class class class)co 7315 ℂcc 10942 ℝcr 10943 0cc0 10944 < clt 11082 ≤ cle 11083 − cmin 11278 ℝ+crp 12803 abscabs 15017 ⇝𝑟 crli 15266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-er 8546 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-ltxr 11087 df-sub 11280 df-rlim 15270 |
This theorem is referenced by: o1rlimmul 15400 dvfsumrlim 25267 rlimcxp 26195 |
Copyright terms: Public domain | W3C validator |