| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlim0 | Structured version Visualization version GIF version | ||
| Description: Express the predicate 𝐵(𝑧) converges to 0. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| rlim0.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) |
| rlim0.2 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| Ref | Expression |
|---|---|
| rlim0 | ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlim0.1 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ) | |
| 2 | rlim0.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 3 | 0cnd 11112 | . . 3 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 4 | 1, 2, 3 | rlim2 15405 | . 2 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥))) |
| 5 | subid1 11388 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵) | |
| 6 | 5 | fveq2d 6832 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵)) |
| 7 | 6 | breq1d 5103 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥)) |
| 8 | 7 | imbi2d 340 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
| 9 | 8 | ralimi 3070 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ ℂ → ∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
| 10 | ralbi 3088 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 ((𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) | |
| 11 | 1, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → (∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
| 12 | 11 | rexbidv 3157 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
| 13 | 12 | ralbidv 3156 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
| 14 | 4, 13 | bitrd 279 | 1 ⊢ (𝜑 → ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘𝐵) < 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 < clt 11153 ≤ cle 11154 − cmin 11351 ℝ+crp 12892 abscabs 15143 ⇝𝑟 crli 15394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-rlim 15398 |
| This theorem is referenced by: o1rlimmul 15528 dvfsumrlim 25966 rlimcxp 26912 |
| Copyright terms: Public domain | W3C validator |