MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim0 Structured version   Visualization version   GIF version

Theorem rlim0 15544
Description: Express the predicate 𝐵(𝑧) converges to 0. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim0.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim0.2 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
rlim0 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim0
StepHypRef Expression
1 rlim0.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim0.2 . . 3 (𝜑𝐴 ⊆ ℝ)
3 0cnd 11254 . . 3 (𝜑 → 0 ∈ ℂ)
41, 2, 3rlim2 15532 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥)))
5 subid1 11529 . . . . . . . . 9 (𝐵 ∈ ℂ → (𝐵 − 0) = 𝐵)
65fveq2d 6910 . . . . . . . 8 (𝐵 ∈ ℂ → (abs‘(𝐵 − 0)) = (abs‘𝐵))
76breq1d 5153 . . . . . . 7 (𝐵 ∈ ℂ → ((abs‘(𝐵 − 0)) < 𝑥 ↔ (abs‘𝐵) < 𝑥))
87imbi2d 340 . . . . . 6 (𝐵 ∈ ℂ → ((𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
98ralimi 3083 . . . . 5 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
10 ralbi 3103 . . . . 5 (∀𝑧𝐴 ((𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ (𝑦𝑧 → (abs‘𝐵) < 𝑥)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
111, 9, 103syl 18 . . . 4 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
1211rexbidv 3179 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
1312ralbidv 3178 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵 − 0)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
144, 13bitrd 279 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 0 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘𝐵) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   < clt 11295  cle 11296  cmin 11492  +crp 13034  abscabs 15273  𝑟 crli 15521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-rlim 15525
This theorem is referenced by:  o1rlimmul  15655  dvfsumrlim  26072  rlimcxp  27017
  Copyright terms: Public domain W3C validator