MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsres Structured version   Visualization version   GIF version

Theorem efgsres 18866
Description: An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsres ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgsres
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . . 9 = ( ~FG𝐼)
3 efgval2.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 18858 . . . . . . . 8 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
87simp1bi 1141 . . . . . . 7 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
98adantr 483 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ (Word 𝑊 ∖ {∅}))
109eldifad 3950 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ Word 𝑊)
11 fz1ssfz0 13006 . . . . . 6 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
12 simpr 487 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (1...(♯‘𝐹)))
1311, 12sseldi 3967 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (0...(♯‘𝐹)))
14 pfxres 14043 . . . . 5 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1510, 13, 14syl2anc 586 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
16 pfxcl 14041 . . . . 5 (𝐹 ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Word 𝑊)
1710, 16syl 17 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ∈ Word 𝑊)
1815, 17eqeltrrd 2916 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊)
19 pfxlen 14047 . . . . . . 7 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2010, 13, 19syl2anc 586 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
21 elfznn 12939 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → 𝑁 ∈ ℕ)
2221adantl 484 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℕ)
2320, 22eqeltrd 2915 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) ∈ ℕ)
24 wrdfin 13884 . . . . . 6 ((𝐹 prefix 𝑁) ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Fin)
25 hashnncl 13730 . . . . . 6 ((𝐹 prefix 𝑁) ∈ Fin → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅))
2617, 24, 253syl 18 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅))
2723, 26mpbid 234 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ≠ ∅)
2815, 27eqnetrrd 3086 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ≠ ∅)
29 eldifsn 4721 . . 3 ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ↔ ((𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊 ∧ (𝐹 ↾ (0..^𝑁)) ≠ ∅))
3018, 28, 29sylanbrc 585 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}))
31 lbfzo0 13080 . . . . 5 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3222, 31sylibr 236 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 0 ∈ (0..^𝑁))
3332fvresd 6692 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) = (𝐹‘0))
347simp2bi 1142 . . . 4 (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷)
3534adantr 483 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹‘0) ∈ 𝐷)
3633, 35eqeltrd 2915 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷)
37 elfzuz3 12908 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
3837adantl 484 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝑁))
39 fzoss2 13068 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
4038, 39syl 17 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
417simp3bi 1143 . . . . . 6 (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
4241adantr 483 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
43 ssralv 4035 . . . . 5 ((1..^𝑁) ⊆ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
4440, 42, 43sylc 65 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
45 fzo0ss1 13070 . . . . . . . 8 (1..^𝑁) ⊆ (0..^𝑁)
4645sseli 3965 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → 𝑖 ∈ (0..^𝑁))
4746fvresd 6692 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑖) = (𝐹𝑖))
48 elfzoel2 13040 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
49 peano2zm 12028 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → (𝑁 − 1) ∈ ℤ)
51 uzid 12261 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5248, 51syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ𝑁))
5348zcnd 12091 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℂ)
54 ax-1cn 10597 . . . . . . . . . . . . . . 15 1 ∈ ℂ
55 npcan 10897 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5653, 54, 55sylancl 588 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^𝑁) → ((𝑁 − 1) + 1) = 𝑁)
5756fveq2d 6676 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
5852, 57eleqtrrd 2918 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
59 peano2uzr 12306 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
6050, 58, 59syl2anc 586 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
61 fzoss2 13068 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6260, 61syl 17 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
63 elfzo1elm1fzo0 13141 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^(𝑁 − 1)))
6462, 63sseldd 3970 . . . . . . . . 9 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^𝑁))
6564fvresd 6692 . . . . . . . 8 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
6665fveq2d 6676 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
6766rneqd 5810 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
6847, 67eleq12d 2909 . . . . 5 (𝑖 ∈ (1..^𝑁) → (((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
6968ralbiia 3166 . . . 4 (∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
7044, 69sylibr 236 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
7115fveq2d 6676 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = (♯‘(𝐹 ↾ (0..^𝑁))))
7271, 20eqtr3d 2860 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
7372oveq2d 7174 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (1..^𝑁))
7473raleqdv 3417 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))))
7570, 74mpbird 259 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
761, 2, 3, 4, 5, 6efgsdm 18858 . 2 ((𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆 ↔ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))))
7730, 36, 75, 76syl3anbrc 1339 1 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  cdif 3935  wss 3938  c0 4293  {csn 4569  cop 4575  cotp 4577   ciun 4921  cmpt 5148   I cid 5461   × cxp 5555  dom cdm 5557  ran crn 5558  cres 5559  cfv 6357  (class class class)co 7158  cmpo 7160  1oc1o 8097  2oc2o 8098  Fincfn 8511  cc 10537  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  cn 11640  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036  chash 13693  Word cword 13864   prefix cpfx 14034   splice csplice 14113  ⟨“cs2 14205   ~FG cefg 18834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-substr 14005  df-pfx 14035
This theorem is referenced by:  efgredlemd  18872  efgredlem  18875
  Copyright terms: Public domain W3C validator