MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsres Structured version   Visualization version   GIF version

Theorem efgsres 18591
Description: An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsres ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgsres
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . . 9 = ( ~FG𝐼)
3 efgval2.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 18583 . . . . . . . 8 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
87simp1bi 1138 . . . . . . 7 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
98adantr 481 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ (Word 𝑊 ∖ {∅}))
109eldifad 3871 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ Word 𝑊)
11 fz1ssfz0 12853 . . . . . 6 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
12 simpr 485 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (1...(♯‘𝐹)))
1311, 12sseldi 3887 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (0...(♯‘𝐹)))
14 pfxres 13877 . . . . 5 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1510, 13, 14syl2anc 584 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
16 pfxcl 13875 . . . . 5 (𝐹 ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Word 𝑊)
1710, 16syl 17 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ∈ Word 𝑊)
1815, 17eqeltrrd 2884 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊)
19 pfxlen 13881 . . . . . . 7 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2010, 13, 19syl2anc 584 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
21 elfznn 12786 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → 𝑁 ∈ ℕ)
2221adantl 482 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℕ)
2320, 22eqeltrd 2883 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) ∈ ℕ)
24 wrdfin 13728 . . . . . 6 ((𝐹 prefix 𝑁) ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Fin)
25 hashnncl 13577 . . . . . 6 ((𝐹 prefix 𝑁) ∈ Fin → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅))
2617, 24, 253syl 18 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅))
2723, 26mpbid 233 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ≠ ∅)
2815, 27eqnetrrd 3052 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ≠ ∅)
29 eldifsn 4626 . . 3 ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ↔ ((𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊 ∧ (𝐹 ↾ (0..^𝑁)) ≠ ∅))
3018, 28, 29sylanbrc 583 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}))
31 lbfzo0 12927 . . . . 5 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3222, 31sylibr 235 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 0 ∈ (0..^𝑁))
3332fvresd 6558 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) = (𝐹‘0))
347simp2bi 1139 . . . 4 (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷)
3534adantr 481 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹‘0) ∈ 𝐷)
3633, 35eqeltrd 2883 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷)
37 elfzuz3 12755 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
3837adantl 482 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝑁))
39 fzoss2 12915 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
4038, 39syl 17 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
417simp3bi 1140 . . . . . 6 (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
4241adantr 481 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
43 ssralv 3954 . . . . 5 ((1..^𝑁) ⊆ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
4440, 42, 43sylc 65 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
45 fzo0ss1 12917 . . . . . . . 8 (1..^𝑁) ⊆ (0..^𝑁)
4645sseli 3885 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → 𝑖 ∈ (0..^𝑁))
4746fvresd 6558 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑖) = (𝐹𝑖))
48 elfzoel2 12887 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
49 peano2zm 11874 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → (𝑁 − 1) ∈ ℤ)
51 uzid 12108 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5248, 51syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ𝑁))
5348zcnd 11937 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℂ)
54 ax-1cn 10441 . . . . . . . . . . . . . . 15 1 ∈ ℂ
55 npcan 10743 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5653, 54, 55sylancl 586 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^𝑁) → ((𝑁 − 1) + 1) = 𝑁)
5756fveq2d 6542 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
5852, 57eleqtrrd 2886 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
59 peano2uzr 12152 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
6050, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
61 fzoss2 12915 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6260, 61syl 17 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
63 elfzo1elm1fzo0 12988 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^(𝑁 − 1)))
6462, 63sseldd 3890 . . . . . . . . 9 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^𝑁))
6564fvresd 6558 . . . . . . . 8 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
6665fveq2d 6542 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
6766rneqd 5690 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
6847, 67eleq12d 2877 . . . . 5 (𝑖 ∈ (1..^𝑁) → (((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
6968ralbiia 3131 . . . 4 (∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
7044, 69sylibr 235 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
7115fveq2d 6542 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = (♯‘(𝐹 ↾ (0..^𝑁))))
7271, 20eqtr3d 2833 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
7372oveq2d 7032 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (1..^𝑁))
7473raleqdv 3375 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))))
7570, 74mpbird 258 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
761, 2, 3, 4, 5, 6efgsdm 18583 . 2 ((𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆 ↔ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))))
7730, 36, 75, 76syl3anbrc 1336 1 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wne 2984  wral 3105  {crab 3109  cdif 3856  wss 3859  c0 4211  {csn 4472  cop 4478  cotp 4480   ciun 4825  cmpt 5041   I cid 5347   × cxp 5441  dom cdm 5443  ran crn 5444  cres 5445  cfv 6225  (class class class)co 7016  cmpo 7018  1oc1o 7946  2oc2o 7947  Fincfn 8357  cc 10381  0cc0 10383  1c1 10384   + caddc 10386  cmin 10717  cn 11486  cz 11829  cuz 12093  ...cfz 12742  ..^cfzo 12883  chash 13540  Word cword 13707   prefix cpfx 13868   splice csplice 13947  ⟨“cs2 14039   ~FG cefg 18559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-substr 13839  df-pfx 13869
This theorem is referenced by:  efgredlemd  18597  efgredlem  18600
  Copyright terms: Public domain W3C validator