MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsres Structured version   Visualization version   GIF version

Theorem efgsres 18357
Description: An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsres ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgsres
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . . . . . . 9 = ( ~FG𝐼)
3 efgval2.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 18349 . . . . . . . 8 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
87simp1bi 1138 . . . . . . 7 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
98adantr 466 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ (Word 𝑊 ∖ {∅}))
109eldifad 3733 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ Word 𝑊)
11 fz1ssfz0 12642 . . . . . 6 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
12 simpr 471 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (1...(♯‘𝐹)))
1311, 12sseldi 3748 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (0...(♯‘𝐹)))
14 swrd0val 13628 . . . . 5 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 substr ⟨0, 𝑁⟩) = (𝐹 ↾ (0..^𝑁)))
1510, 13, 14syl2anc 565 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 substr ⟨0, 𝑁⟩) = (𝐹 ↾ (0..^𝑁)))
16 swrdcl 13626 . . . . 5 (𝐹 ∈ Word 𝑊 → (𝐹 substr ⟨0, 𝑁⟩) ∈ Word 𝑊)
1710, 16syl 17 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 substr ⟨0, 𝑁⟩) ∈ Word 𝑊)
1815, 17eqeltrrd 2850 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊)
19 swrd0len 13629 . . . . . . 7 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 substr ⟨0, 𝑁⟩)) = 𝑁)
2010, 13, 19syl2anc 565 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 substr ⟨0, 𝑁⟩)) = 𝑁)
21 elfznn 12576 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → 𝑁 ∈ ℕ)
2221adantl 467 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℕ)
2320, 22eqeltrd 2849 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 substr ⟨0, 𝑁⟩)) ∈ ℕ)
24 wrdfin 13518 . . . . . 6 ((𝐹 substr ⟨0, 𝑁⟩) ∈ Word 𝑊 → (𝐹 substr ⟨0, 𝑁⟩) ∈ Fin)
25 hashnncl 13358 . . . . . 6 ((𝐹 substr ⟨0, 𝑁⟩) ∈ Fin → ((♯‘(𝐹 substr ⟨0, 𝑁⟩)) ∈ ℕ ↔ (𝐹 substr ⟨0, 𝑁⟩) ≠ ∅))
2617, 24, 253syl 18 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((♯‘(𝐹 substr ⟨0, 𝑁⟩)) ∈ ℕ ↔ (𝐹 substr ⟨0, 𝑁⟩) ≠ ∅))
2723, 26mpbid 222 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 substr ⟨0, 𝑁⟩) ≠ ∅)
2815, 27eqnetrrd 3010 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ≠ ∅)
29 eldifsn 4451 . . 3 ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ↔ ((𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊 ∧ (𝐹 ↾ (0..^𝑁)) ≠ ∅))
3018, 28, 29sylanbrc 564 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}))
31 lbfzo0 12715 . . . . 5 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3222, 31sylibr 224 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 0 ∈ (0..^𝑁))
33 fvres 6348 . . . 4 (0 ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘0) = (𝐹‘0))
3432, 33syl 17 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) = (𝐹‘0))
357simp2bi 1139 . . . 4 (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷)
3635adantr 466 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹‘0) ∈ 𝐷)
3734, 36eqeltrd 2849 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷)
38 elfzuz3 12545 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
3938adantl 467 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝑁))
40 fzoss2 12703 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
4139, 40syl 17 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
427simp3bi 1140 . . . . . 6 (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
4342adantr 466 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
44 ssralv 3813 . . . . 5 ((1..^𝑁) ⊆ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
4541, 43, 44sylc 65 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
46 fzo0ss1 12705 . . . . . . . 8 (1..^𝑁) ⊆ (0..^𝑁)
4746sseli 3746 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → 𝑖 ∈ (0..^𝑁))
48 fvres 6348 . . . . . . 7 (𝑖 ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑖) = (𝐹𝑖))
4947, 48syl 17 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑖) = (𝐹𝑖))
50 elfzoel2 12676 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
51 peano2zm 11621 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5250, 51syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → (𝑁 − 1) ∈ ℤ)
53 uzid 11902 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5450, 53syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ𝑁))
5550zcnd 11684 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℂ)
56 ax-1cn 10195 . . . . . . . . . . . . . . 15 1 ∈ ℂ
57 npcan 10491 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5855, 56, 57sylancl 566 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^𝑁) → ((𝑁 − 1) + 1) = 𝑁)
5958fveq2d 6336 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
6054, 59eleqtrrd 2852 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
61 peano2uzr 11944 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
6252, 60, 61syl2anc 565 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
63 fzoss2 12703 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6462, 63syl 17 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
65 elfzoelz 12677 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → 𝑖 ∈ ℤ)
66 elfzom1b 12774 . . . . . . . . . . . 12 ((𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ (1..^𝑁) ↔ (𝑖 − 1) ∈ (0..^(𝑁 − 1))))
6765, 50, 66syl2anc 565 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑁) → (𝑖 ∈ (1..^𝑁) ↔ (𝑖 − 1) ∈ (0..^(𝑁 − 1))))
6867ibi 256 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^(𝑁 − 1)))
6964, 68sseldd 3751 . . . . . . . . 9 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^𝑁))
70 fvres 6348 . . . . . . . . 9 ((𝑖 − 1) ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
7169, 70syl 17 . . . . . . . 8 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
7271fveq2d 6336 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
7372rneqd 5491 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
7449, 73eleq12d 2843 . . . . 5 (𝑖 ∈ (1..^𝑁) → (((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
7574ralbiia 3127 . . . 4 (∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
7645, 75sylibr 224 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
7715fveq2d 6336 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 substr ⟨0, 𝑁⟩)) = (♯‘(𝐹 ↾ (0..^𝑁))))
7877, 20eqtr3d 2806 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
7978oveq2d 6808 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (1..^𝑁))
8079raleqdv 3292 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))))
8176, 80mpbird 247 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
821, 2, 3, 4, 5, 6efgsdm 18349 . 2 ((𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆 ↔ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))))
8330, 37, 81, 82syl3anbrc 1427 1 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  {crab 3064  cdif 3718  wss 3721  c0 4061  {csn 4314  cop 4320  cotp 4322   ciun 4652  cmpt 4861   I cid 5156   × cxp 5247  dom cdm 5249  ran crn 5250  cres 5251  cfv 6031  (class class class)co 6792  cmpt2 6794  1𝑜c1o 7705  2𝑜c2o 7706  Fincfn 8108  cc 10135  0cc0 10137  1c1 10138   + caddc 10140  cmin 10467  cn 11221  cz 11578  cuz 11887  ...cfz 12532  ..^cfzo 12672  chash 13320  Word cword 13486   substr csubstr 13490   splice csplice 13491  ⟨“cs2 13794   ~FG cefg 18325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-substr 13498
This theorem is referenced by:  efgredlemd  18363  efgredlem  18366
  Copyright terms: Public domain W3C validator