Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . . . . 9
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | efgval.r |
. . . . . . . . 9
⊢ ∼ = (
~FG ‘𝐼) |
3 | | efgval2.m |
. . . . . . . . 9
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
4 | | efgval2.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
5 | | efgred.d |
. . . . . . . . 9
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
6 | | efgred.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
7 | 1, 2, 3, 4, 5, 6 | efgsdm 19251 |
. . . . . . . 8
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
8 | 7 | simp1bi 1143 |
. . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
10 | 9 | eldifad 3895 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ Word 𝑊) |
11 | | fz1ssfz0 13281 |
. . . . . 6
⊢
(1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
12 | | simpr 484 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (1...(♯‘𝐹))) |
13 | 11, 12 | sselid 3915 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (0...(♯‘𝐹))) |
14 | | pfxres 14320 |
. . . . 5
⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
15 | 10, 13, 14 | syl2anc 583 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
16 | | pfxcl 14318 |
. . . . 5
⊢ (𝐹 ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Word 𝑊) |
17 | 10, 16 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ∈ Word 𝑊) |
18 | 15, 17 | eqeltrrd 2840 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊) |
19 | | pfxlen 14324 |
. . . . . . 7
⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
20 | 10, 13, 19 | syl2anc 583 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
21 | | elfznn 13214 |
. . . . . . 7
⊢ (𝑁 ∈
(1...(♯‘𝐹))
→ 𝑁 ∈
ℕ) |
22 | 21 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℕ) |
23 | 20, 22 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) ∈ ℕ) |
24 | | wrdfin 14163 |
. . . . . 6
⊢ ((𝐹 prefix 𝑁) ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Fin) |
25 | | hashnncl 14009 |
. . . . . 6
⊢ ((𝐹 prefix 𝑁) ∈ Fin → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅)) |
26 | 17, 24, 25 | 3syl 18 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) →
((♯‘(𝐹 prefix
𝑁)) ∈ ℕ ↔
(𝐹 prefix 𝑁) ≠ ∅)) |
27 | 23, 26 | mpbid 231 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ≠ ∅) |
28 | 15, 27 | eqnetrrd 3011 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ≠ ∅) |
29 | | eldifsn 4717 |
. . 3
⊢ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ↔ ((𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊 ∧ (𝐹 ↾ (0..^𝑁)) ≠ ∅)) |
30 | 18, 28, 29 | sylanbrc 582 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅})) |
31 | | lbfzo0 13355 |
. . . . 5
⊢ (0 ∈
(0..^𝑁) ↔ 𝑁 ∈
ℕ) |
32 | 22, 31 | sylibr 233 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 0 ∈ (0..^𝑁)) |
33 | 32 | fvresd 6776 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) = (𝐹‘0)) |
34 | 7 | simp2bi 1144 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷) |
35 | 34 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹‘0) ∈ 𝐷) |
36 | 33, 35 | eqeltrd 2839 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷) |
37 | | elfzuz3 13182 |
. . . . . . 7
⊢ (𝑁 ∈
(1...(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝑁)) |
38 | 37 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘𝐹) ∈
(ℤ≥‘𝑁)) |
39 | | fzoss2 13343 |
. . . . . 6
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝑁) → (1..^𝑁) ⊆ (1..^(♯‘𝐹))) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (1..^𝑁) ⊆
(1..^(♯‘𝐹))) |
41 | 7 | simp3bi 1145 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
42 | 41 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
43 | | ssralv 3983 |
. . . . 5
⊢
((1..^𝑁) ⊆
(1..^(♯‘𝐹))
→ (∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) → ∀𝑖 ∈ (1..^𝑁)(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
44 | 40, 42, 43 | sylc 65 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
45 | | fzo0ss1 13345 |
. . . . . . . 8
⊢
(1..^𝑁) ⊆
(0..^𝑁) |
46 | 45 | sseli 3913 |
. . . . . . 7
⊢ (𝑖 ∈ (1..^𝑁) → 𝑖 ∈ (0..^𝑁)) |
47 | 46 | fvresd 6776 |
. . . . . 6
⊢ (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑖) = (𝐹‘𝑖)) |
48 | | elfzoel2 13315 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℤ) |
49 | | peano2zm 12293 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1..^𝑁) → (𝑁 − 1) ∈ ℤ) |
51 | | uzid 12526 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
52 | 48, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑁)) |
53 | 48 | zcnd 12356 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℂ) |
54 | | ax-1cn 10860 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
55 | | npcan 11160 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
56 | 53, 54, 55 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1..^𝑁) → ((𝑁 − 1) + 1) = 𝑁) |
57 | 56 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^𝑁) →
(ℤ≥‘((𝑁 − 1) + 1)) =
(ℤ≥‘𝑁)) |
58 | 52, 57 | eleqtrrd 2842 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
59 | | peano2uzr 12572 |
. . . . . . . . . . . 12
⊢ (((𝑁 − 1) ∈ ℤ ∧
𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
60 | 50, 58, 59 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
61 | | fzoss2 13343 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
62 | 60, 61 | syl 17 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
63 | | elfzo1elm1fzo0 13416 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^(𝑁 − 1))) |
64 | 62, 63 | sseldd 3918 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^𝑁)) |
65 | 64 | fvresd 6776 |
. . . . . . . 8
⊢ (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) |
66 | 65 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑖 ∈ (1..^𝑁) → (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1)))) |
67 | 66 | rneqd 5836 |
. . . . . 6
⊢ (𝑖 ∈ (1..^𝑁) → ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
68 | 47, 67 | eleq12d 2833 |
. . . . 5
⊢ (𝑖 ∈ (1..^𝑁) → (((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
69 | 68 | ralbiia 3089 |
. . . 4
⊢
(∀𝑖 ∈
(1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
70 | 44, 69 | sylibr 233 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))) |
71 | 15 | fveq2d 6760 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = (♯‘(𝐹 ↾ (0..^𝑁)))) |
72 | 71, 20 | eqtr3d 2780 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
73 | 72 | oveq2d 7271 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) →
(1..^(♯‘(𝐹
↾ (0..^𝑁)))) =
(1..^𝑁)) |
74 | 73 | raleqdv 3339 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (∀𝑖 ∈
(1..^(♯‘(𝐹
↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))) |
75 | 70, 74 | mpbird 256 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈
(1..^(♯‘(𝐹
↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))) |
76 | 1, 2, 3, 4, 5, 6 | efgsdm 19251 |
. 2
⊢ ((𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆 ↔ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))) |
77 | 30, 36, 75, 76 | syl3anbrc 1341 |
1
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆) |