MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsres Structured version   Visualization version   GIF version

Theorem efgsres 19668
Description: An initial segment of an extension sequence is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 3-Nov-2022.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsres ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)

Proof of Theorem efgsres
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . . . 9 = ( ~FG𝐼)
3 efgval2.m . . . . . . . . 9 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . . . 9 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . . . 9 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . . . 9 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 19660 . . . . . . . 8 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
87simp1bi 1145 . . . . . . 7 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
98adantr 480 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ (Word 𝑊 ∖ {∅}))
109eldifad 3926 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ Word 𝑊)
11 fz1ssfz0 13584 . . . . . 6 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
12 simpr 484 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (1...(♯‘𝐹)))
1311, 12sselid 3944 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (0...(♯‘𝐹)))
14 pfxres 14644 . . . . 5 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
1510, 13, 14syl2anc 584 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁)))
16 pfxcl 14642 . . . . 5 (𝐹 ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Word 𝑊)
1710, 16syl 17 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ∈ Word 𝑊)
1815, 17eqeltrrd 2829 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊)
19 pfxlen 14648 . . . . . . 7 ((𝐹 ∈ Word 𝑊𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
2010, 13, 19syl2anc 584 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁)
21 elfznn 13514 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → 𝑁 ∈ ℕ)
2221adantl 481 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℕ)
2320, 22eqeltrd 2828 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) ∈ ℕ)
24 wrdfin 14497 . . . . . 6 ((𝐹 prefix 𝑁) ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Fin)
25 hashnncl 14331 . . . . . 6 ((𝐹 prefix 𝑁) ∈ Fin → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅))
2617, 24, 253syl 18 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅))
2723, 26mpbid 232 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ≠ ∅)
2815, 27eqnetrrd 2993 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ≠ ∅)
29 eldifsn 4750 . . 3 ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ↔ ((𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊 ∧ (𝐹 ↾ (0..^𝑁)) ≠ ∅))
3018, 28, 29sylanbrc 583 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}))
31 lbfzo0 13660 . . . . 5 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
3222, 31sylibr 234 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → 0 ∈ (0..^𝑁))
3332fvresd 6878 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) = (𝐹‘0))
347simp2bi 1146 . . . 4 (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷)
3534adantr 480 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹‘0) ∈ 𝐷)
3633, 35eqeltrd 2828 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷)
37 elfzuz3 13482 . . . . . . 7 (𝑁 ∈ (1...(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ𝑁))
3837adantl 481 . . . . . 6 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘𝐹) ∈ (ℤ𝑁))
39 fzoss2 13648 . . . . . 6 ((♯‘𝐹) ∈ (ℤ𝑁) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
4038, 39syl 17 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^𝑁) ⊆ (1..^(♯‘𝐹)))
417simp3bi 1147 . . . . . 6 (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
4241adantr 480 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
43 ssralv 4015 . . . . 5 ((1..^𝑁) ⊆ (1..^(♯‘𝐹)) → (∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
4440, 42, 43sylc 65 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
45 fzo0ss1 13650 . . . . . . . 8 (1..^𝑁) ⊆ (0..^𝑁)
4645sseli 3942 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → 𝑖 ∈ (0..^𝑁))
4746fvresd 6878 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑖) = (𝐹𝑖))
48 elfzoel2 13619 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
49 peano2zm 12576 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → (𝑁 − 1) ∈ ℤ)
51 uzid 12808 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5248, 51syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ𝑁))
5348zcnd 12639 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℂ)
54 ax-1cn 11126 . . . . . . . . . . . . . . 15 1 ∈ ℂ
55 npcan 11430 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5653, 54, 55sylancl 586 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^𝑁) → ((𝑁 − 1) + 1) = 𝑁)
5756fveq2d 6862 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^𝑁) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
5852, 57eleqtrrd 2831 . . . . . . . . . . . 12 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
59 peano2uzr 12862 . . . . . . . . . . . 12 (((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑁 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
6050, 58, 59syl2anc 584 . . . . . . . . . . 11 (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
61 fzoss2 13648 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
6260, 61syl 17 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
63 elfzo1elm1fzo0 13729 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^(𝑁 − 1)))
6462, 63sseldd 3947 . . . . . . . . 9 (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^𝑁))
6564fvresd 6878 . . . . . . . 8 (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
6665fveq2d 6862 . . . . . . 7 (𝑖 ∈ (1..^𝑁) → (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
6766rneqd 5902 . . . . . 6 (𝑖 ∈ (1..^𝑁) → ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
6847, 67eleq12d 2822 . . . . 5 (𝑖 ∈ (1..^𝑁) → (((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
6968ralbiia 3073 . . . 4 (∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
7044, 69sylibr 234 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
7115fveq2d 6862 . . . . 5 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = (♯‘(𝐹 ↾ (0..^𝑁))))
7271, 20eqtr3d 2766 . . . 4 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
7372oveq2d 7403 . . 3 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (1..^(♯‘(𝐹 ↾ (0..^𝑁)))) = (1..^𝑁))
7470, 73raleqtrrdv 3303 . 2 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))
751, 2, 3, 4, 5, 6efgsdm 19660 . 2 ((𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆 ↔ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))))
7630, 36, 74, 75syl3anbrc 1344 1 ((𝐹 ∈ dom 𝑆𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  wss 3914  c0 4296  {csn 4589  cop 4595  cotp 4597   ciun 4955  cmpt 5188   I cid 5532   × cxp 5636  dom cdm 5638  ran crn 5639  cres 5640  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  cn 12186  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   prefix cpfx 14635   splice csplice 14714  ⟨“cs2 14807   ~FG cefg 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606  df-pfx 14636
This theorem is referenced by:  efgredlemd  19674  efgredlem  19677
  Copyright terms: Public domain W3C validator