| Step | Hyp | Ref
| Expression |
| 1 | | efgval.w |
. . . . . . . . 9
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
| 2 | | efgval.r |
. . . . . . . . 9
⊢ ∼ = (
~FG ‘𝐼) |
| 3 | | efgval2.m |
. . . . . . . . 9
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
| 4 | | efgval2.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
| 5 | | efgred.d |
. . . . . . . . 9
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
| 6 | | efgred.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
| 7 | 1, 2, 3, 4, 5, 6 | efgsdm 19716 |
. . . . . . . 8
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 8 | 7 | simp1bi 1145 |
. . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
| 10 | 9 | eldifad 3943 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝐹 ∈ Word 𝑊) |
| 11 | | fz1ssfz0 13645 |
. . . . . 6
⊢
(1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
| 12 | | simpr 484 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (1...(♯‘𝐹))) |
| 13 | 11, 12 | sselid 3961 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ (0...(♯‘𝐹))) |
| 14 | | pfxres 14702 |
. . . . 5
⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
| 15 | 10, 13, 14 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) = (𝐹 ↾ (0..^𝑁))) |
| 16 | | pfxcl 14700 |
. . . . 5
⊢ (𝐹 ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Word 𝑊) |
| 17 | 10, 16 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ∈ Word 𝑊) |
| 18 | 15, 17 | eqeltrrd 2836 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊) |
| 19 | | pfxlen 14706 |
. . . . . . 7
⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝑁 ∈ (0...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
| 20 | 10, 13, 19 | syl2anc 584 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = 𝑁) |
| 21 | | elfznn 13575 |
. . . . . . 7
⊢ (𝑁 ∈
(1...(♯‘𝐹))
→ 𝑁 ∈
ℕ) |
| 22 | 21 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 𝑁 ∈ ℕ) |
| 23 | 20, 22 | eqeltrd 2835 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) ∈ ℕ) |
| 24 | | wrdfin 14555 |
. . . . . 6
⊢ ((𝐹 prefix 𝑁) ∈ Word 𝑊 → (𝐹 prefix 𝑁) ∈ Fin) |
| 25 | | hashnncl 14389 |
. . . . . 6
⊢ ((𝐹 prefix 𝑁) ∈ Fin → ((♯‘(𝐹 prefix 𝑁)) ∈ ℕ ↔ (𝐹 prefix 𝑁) ≠ ∅)) |
| 26 | 17, 24, 25 | 3syl 18 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) →
((♯‘(𝐹 prefix
𝑁)) ∈ ℕ ↔
(𝐹 prefix 𝑁) ≠ ∅)) |
| 27 | 23, 26 | mpbid 232 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 prefix 𝑁) ≠ ∅) |
| 28 | 15, 27 | eqnetrrd 3001 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ≠ ∅) |
| 29 | | eldifsn 4767 |
. . 3
⊢ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ↔ ((𝐹 ↾ (0..^𝑁)) ∈ Word 𝑊 ∧ (𝐹 ↾ (0..^𝑁)) ≠ ∅)) |
| 30 | 18, 28, 29 | sylanbrc 583 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅})) |
| 31 | | lbfzo0 13721 |
. . . . 5
⊢ (0 ∈
(0..^𝑁) ↔ 𝑁 ∈
ℕ) |
| 32 | 22, 31 | sylibr 234 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → 0 ∈ (0..^𝑁)) |
| 33 | 32 | fvresd 6901 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) = (𝐹‘0)) |
| 34 | 7 | simp2bi 1146 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷) |
| 35 | 34 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹‘0) ∈ 𝐷) |
| 36 | 33, 35 | eqeltrd 2835 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷) |
| 37 | | elfzuz3 13543 |
. . . . . . 7
⊢ (𝑁 ∈
(1...(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘𝑁)) |
| 38 | 37 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘𝐹) ∈
(ℤ≥‘𝑁)) |
| 39 | | fzoss2 13709 |
. . . . . 6
⊢
((♯‘𝐹)
∈ (ℤ≥‘𝑁) → (1..^𝑁) ⊆ (1..^(♯‘𝐹))) |
| 40 | 38, 39 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (1..^𝑁) ⊆
(1..^(♯‘𝐹))) |
| 41 | 7 | simp3bi 1147 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 42 | 41 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 43 | | ssralv 4032 |
. . . . 5
⊢
((1..^𝑁) ⊆
(1..^(♯‘𝐹))
→ (∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))) → ∀𝑖 ∈ (1..^𝑁)(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 44 | 40, 42, 43 | sylc 65 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 45 | | fzo0ss1 13711 |
. . . . . . . 8
⊢
(1..^𝑁) ⊆
(0..^𝑁) |
| 46 | 45 | sseli 3959 |
. . . . . . 7
⊢ (𝑖 ∈ (1..^𝑁) → 𝑖 ∈ (0..^𝑁)) |
| 47 | 46 | fvresd 6901 |
. . . . . 6
⊢ (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑖) = (𝐹‘𝑖)) |
| 48 | | elfzoel2 13680 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℤ) |
| 49 | | peano2zm 12640 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1..^𝑁) → (𝑁 − 1) ∈ ℤ) |
| 51 | | uzid 12872 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
| 52 | 48, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 53 | 48 | zcnd 12703 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ ℂ) |
| 54 | | ax-1cn 11192 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 55 | | npcan 11496 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
| 56 | 53, 54, 55 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1..^𝑁) → ((𝑁 − 1) + 1) = 𝑁) |
| 57 | 56 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1..^𝑁) →
(ℤ≥‘((𝑁 − 1) + 1)) =
(ℤ≥‘𝑁)) |
| 58 | 52, 57 | eleqtrrd 2838 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) |
| 59 | | peano2uzr 12924 |
. . . . . . . . . . . 12
⊢ (((𝑁 − 1) ∈ ℤ ∧
𝑁 ∈
(ℤ≥‘((𝑁 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 60 | 50, 58, 59 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1..^𝑁) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 61 | | fzoss2 13709 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
| 63 | | elfzo1elm1fzo0 13789 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^(𝑁 − 1))) |
| 64 | 62, 63 | sseldd 3964 |
. . . . . . . . 9
⊢ (𝑖 ∈ (1..^𝑁) → (𝑖 − 1) ∈ (0..^𝑁)) |
| 65 | 64 | fvresd 6901 |
. . . . . . . 8
⊢ (𝑖 ∈ (1..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) |
| 66 | 65 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑖 ∈ (1..^𝑁) → (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 67 | 66 | rneqd 5923 |
. . . . . 6
⊢ (𝑖 ∈ (1..^𝑁) → ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 68 | 47, 67 | eleq12d 2829 |
. . . . 5
⊢ (𝑖 ∈ (1..^𝑁) → (((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
| 69 | 68 | ralbiia 3081 |
. . . 4
⊢
(∀𝑖 ∈
(1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^𝑁)(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
| 70 | 44, 69 | sylibr 234 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈ (1..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))) |
| 71 | 15 | fveq2d 6885 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 prefix 𝑁)) = (♯‘(𝐹 ↾ (0..^𝑁)))) |
| 72 | 71, 20 | eqtr3d 2773 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
| 73 | 72 | oveq2d 7426 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) →
(1..^(♯‘(𝐹
↾ (0..^𝑁)))) =
(1..^𝑁)) |
| 74 | 70, 73 | raleqtrrdv 3313 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → ∀𝑖 ∈
(1..^(♯‘(𝐹
↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1)))) |
| 75 | 1, 2, 3, 4, 5, 6 | efgsdm 19716 |
. 2
⊢ ((𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆 ↔ ((𝐹 ↾ (0..^𝑁)) ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹 ↾ (0..^𝑁))‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘(𝐹 ↾ (0..^𝑁))))((𝐹 ↾ (0..^𝑁))‘𝑖) ∈ ran (𝑇‘((𝐹 ↾ (0..^𝑁))‘(𝑖 − 1))))) |
| 76 | 30, 36, 74, 75 | syl3anbrc 1344 |
1
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝑁 ∈ (1...(♯‘𝐹))) → (𝐹 ↾ (0..^𝑁)) ∈ dom 𝑆) |