MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksubclwwlk Structured version   Visualization version   GIF version

Theorem wwlksubclwwlk 28710
Description: Any prefix of a word representing a closed walk represents a walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 28-Apr-2021.) (Revised by AV, 1-Nov-2022.)
Assertion
Ref Expression
wwlksubclwwlk ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 prefix 𝑀) ∈ ((𝑀 − 1) WWalksN 𝐺)))

Proof of Theorem wwlksubclwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2736 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 28689 . . . . 5 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)))
4 pfxcl 14488 . . . . . . . . . 10 (𝑋 ∈ Word (Vtx‘𝐺) → (𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺))
54adantr 481 . . . . . . . . 9 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺))
65ad2antrr 723 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺))
7 nnz 12443 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
8 eluzp1m1 12709 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
98ex 413 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
107, 9syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
11 peano2zm 12464 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
127, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
13 nnre 12081 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413lem1d 12009 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ≤ 𝑀)
15 eluzuzle 12692 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀) → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1612, 14, 15syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1710, 16syld 47 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1817imp 407 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
19 fzoss2 13516 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2018, 19syl 17 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2120adantl 482 . . . . . . . . . . . . 13 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
22 ssralv 3998 . . . . . . . . . . . . 13 ((0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2321, 22syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
24 simpll 764 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑋 ∈ Word (Vtx‘𝐺))
2524adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑋 ∈ Word (Vtx‘𝐺))
26 eluz2 12689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
2713adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ∈ ℝ)
28 peano2re 11249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2913, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℝ)
3029adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ∈ ℝ)
31 zre 12424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3231ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑁 ∈ ℝ)
3313lep1d 12007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 + 1))
3433adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑀 + 1))
35 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 1) ≤ 𝑁)
3635adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ≤ 𝑁)
3727, 30, 32, 34, 36letrd 11233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀𝑁)
38 nnnn0 12341 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3938ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
40 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
4140adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
42 0red 11079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
4313adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
4431adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4542, 43, 443jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4645adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4738nn0ge0d 12397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ≤ 𝑀)
4948anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ≤ 𝑀𝑀𝑁))
50 letr 11170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
5146, 49, 50sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
52 elnn0z 12433 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5341, 51, 52sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
5453adantlrr 718 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
55 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀𝑁)
5639, 54, 553jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5737, 56mpdan 684 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5857expcom 414 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
59583adant1 1129 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6026, 59sylbi 216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6160impcom 408 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
62 elfz2nn0 13448 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
6361, 62sylibr 233 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ (0...𝑁))
6463adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...𝑁))
65 oveq2 7345 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑋) = 𝑁 → (0...(♯‘𝑋)) = (0...𝑁))
6665eleq2d 2822 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑋) = 𝑁 → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6766adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6867adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6964, 68mpbird 256 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...(♯‘𝑋)))
7069adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑀 ∈ (0...(♯‘𝑋)))
71 eluz2 12689 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
7212, 7, 14, 71syl3anbrc 1342 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
73 fzoss2 13516 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7472, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7574sseld 3931 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7675ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7776imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
78 pfxfv 14493 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑋 prefix 𝑀)‘𝑖) = (𝑋𝑖))
7925, 70, 77, 78syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 prefix 𝑀)‘𝑖) = (𝑋𝑖))
8079eqcomd 2742 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋𝑖) = ((𝑋 prefix 𝑀)‘𝑖))
81 fzonn0p1p1 13567 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)))
82 nncn 12082 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
83 npcan1 11501 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
8584oveq2d 7353 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (0..^((𝑀 − 1) + 1)) = (0..^𝑀))
8685eleq2d 2822 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → ((𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)) ↔ (𝑖 + 1) ∈ (0..^𝑀)))
8781, 86syl5ib 243 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
8887ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
8988imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑖 + 1) ∈ (0..^𝑀))
90 pfxfv 14493 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ (𝑖 + 1) ∈ (0..^𝑀)) → ((𝑋 prefix 𝑀)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9125, 70, 89, 90syl3anc 1370 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 prefix 𝑀)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9291eqcomd 2742 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋‘(𝑖 + 1)) = ((𝑋 prefix 𝑀)‘(𝑖 + 1)))
9380, 92preq12d 4689 . . . . . . . . . . . . . 14 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → {(𝑋𝑖), (𝑋‘(𝑖 + 1))} = {((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))})
9493eleq1d 2821 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ({(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9594ralbidva 3168 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9623, 95sylibd 238 . . . . . . . . . . 11 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9796impancom 452 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9897imp 407 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
9924, 69jca 512 . . . . . . . . . . . . . 14 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
10099adantlr 712 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
101 pfxlen 14494 . . . . . . . . . . . . 13 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))) → (♯‘(𝑋 prefix 𝑀)) = 𝑀)
102100, 101syl 17 . . . . . . . . . . . 12 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 prefix 𝑀)) = 𝑀)
103102oveq1d 7352 . . . . . . . . . . 11 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((♯‘(𝑋 prefix 𝑀)) − 1) = (𝑀 − 1))
104103oveq2d 7353 . . . . . . . . . 10 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^((♯‘(𝑋 prefix 𝑀)) − 1)) = (0..^(𝑀 − 1)))
105104raleqdv 3309 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10698, 105mpbird 256 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10724, 69, 101syl2anc 584 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 prefix 𝑀)) = 𝑀)
10884eqcomd 2742 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 = ((𝑀 − 1) + 1))
109108ad2antrl 725 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 = ((𝑀 − 1) + 1))
110107, 109eqtrd 2776 . . . . . . . . 9 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1))
111110adantlr 712 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1))
1126, 106, 1113jca 1127 . . . . . . 7 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1)))
113112ex 413 . . . . . 6 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1))))
1141133adant3 1131 . . . . 5 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1))))
1153, 114syl 17 . . . 4 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1))))
116115impcom 408 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1)))
117 nnm1nn0 12375 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
118117ad2antrr 723 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑀 − 1) ∈ ℕ0)
1191, 2iswwlksnx 28493 . . . 4 ((𝑀 − 1) ∈ ℕ0 → ((𝑋 prefix 𝑀) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1))))
120118, 119syl 17 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 prefix 𝑀) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 prefix 𝑀) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 prefix 𝑀)) − 1)){((𝑋 prefix 𝑀)‘𝑖), ((𝑋 prefix 𝑀)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 prefix 𝑀)) = ((𝑀 − 1) + 1))))
121116, 120mpbird 256 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑋 prefix 𝑀) ∈ ((𝑀 − 1) WWalksN 𝐺))
122121ex 413 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 prefix 𝑀) ∈ ((𝑀 − 1) WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wss 3898  {cpr 4575   class class class wbr 5092  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  1c1 10973   + caddc 10975  cle 11111  cmin 11306  cn 12074  0cn0 12334  cz 12420  cuz 12683  ...cfz 13340  ..^cfzo 13483  chash 14145  Word cword 14317  lastSclsw 14365   prefix cpfx 14481  Vtxcvtx 27655  Edgcedg 27706   WWalksN cwwlksn 28479   ClWWalksN cclwwlkn 28676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-oadd 8371  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-fz 13341  df-fzo 13484  df-hash 14146  df-word 14318  df-substr 14452  df-pfx 14482  df-wwlks 28483  df-wwlksn 28484  df-clwwlk 28634  df-clwwlkn 28677
This theorem is referenced by:  numclwlk2lem2f  29029
  Copyright terms: Public domain W3C validator