MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksubclwwlk Structured version   Visualization version   GIF version

Theorem wwlksubclwwlk 27272
Description: Any prefix of a word representing a closed walk represents a walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
wwlksubclwwlk ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))

Proof of Theorem wwlksubclwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2765 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 27248 . . . . 5 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)))
4 swrdcl 13620 . . . . . . . . . 10 (𝑋 ∈ Word (Vtx‘𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
54adantr 472 . . . . . . . . 9 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
65ad2antrr 717 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
7 nnz 11646 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
8 eluzp1m1 11910 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
98ex 401 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
107, 9syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
11 peano2zm 11667 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
127, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
13 nnre 11282 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413lem1d 11211 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ≤ 𝑀)
15 eluzuzle 11895 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀) → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1612, 14, 15syl2anc 579 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1710, 16syld 47 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1817imp 395 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
19 fzoss2 12704 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2018, 19syl 17 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2120adantl 473 . . . . . . . . . . . . 13 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
22 ssralv 3826 . . . . . . . . . . . . 13 ((0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2321, 22syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
24 simpll 783 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑋 ∈ Word (Vtx‘𝐺))
2524adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑋 ∈ Word (Vtx‘𝐺))
26 eluz2 11892 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
2713adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ∈ ℝ)
28 peano2re 10463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2913, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℝ)
3029adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ∈ ℝ)
31 zre 11628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3231ad2antrl 719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑁 ∈ ℝ)
3313lep1d 11209 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 + 1))
3433adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑀 + 1))
35 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 1) ≤ 𝑁)
3635adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ≤ 𝑁)
3727, 30, 32, 34, 36letrd 10448 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀𝑁)
38 nnnn0 11546 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3938ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
40 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
4140adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
42 0red 10297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
4313adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
4431adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4542, 43, 443jca 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4645adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4738nn0ge0d 11601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
4847adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ≤ 𝑀)
4948anim1i 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ≤ 𝑀𝑀𝑁))
50 letr 10385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
5146, 49, 50sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
5241, 51jca 507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
53 elnn0z 11637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5452, 53sylibr 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
5554adantlrr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
56 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀𝑁)
5739, 55, 563jca 1158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5837, 57mpdan 678 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5958expcom 402 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
60593adant1 1160 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6126, 60sylbi 208 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6261impcom 396 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
63 elfz2nn0 12638 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
6462, 63sylibr 225 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ (0...𝑁))
6564adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...𝑁))
66 oveq2 6850 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑋) = 𝑁 → (0...(♯‘𝑋)) = (0...𝑁))
6766eleq2d 2830 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑋) = 𝑁 → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6867adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6968adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
7065, 69mpbird 248 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...(♯‘𝑋)))
7170adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑀 ∈ (0...(♯‘𝑋)))
72 eluz2 11892 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
7312, 7, 14, 72syl3anbrc 1443 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
74 fzoss2 12704 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7675sseld 3760 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7776ad2antrl 719 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7877imp 395 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
79 swrd0fvOLD 13641 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8025, 71, 78, 79syl3anc 1490 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8180eqcomd 2771 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋𝑖) = ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖))
82 fzonn0p1p1 12755 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)))
83 nncn 11283 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
84 npcan1 10709 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
8685oveq2d 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (0..^((𝑀 − 1) + 1)) = (0..^𝑀))
8786eleq2d 2830 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → ((𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)) ↔ (𝑖 + 1) ∈ (0..^𝑀)))
8882, 87syl5ib 235 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
8988ad2antrl 719 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
9089imp 395 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑖 + 1) ∈ (0..^𝑀))
91 swrd0fvOLD 13641 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ (𝑖 + 1) ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9225, 71, 90, 91syl3anc 1490 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9392eqcomd 2771 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋‘(𝑖 + 1)) = ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)))
9481, 93preq12d 4431 . . . . . . . . . . . . . 14 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → {(𝑋𝑖), (𝑋‘(𝑖 + 1))} = {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))})
9594eleq1d 2829 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ({(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9695ralbidva 3132 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9723, 96sylibd 230 . . . . . . . . . . 11 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9897impancom 443 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9998imp 395 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10024, 70jca 507 . . . . . . . . . . . . . 14 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
101100adantlr 706 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
102 swrd0lenOLD 13623 . . . . . . . . . . . . 13 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
103101, 102syl 17 . . . . . . . . . . . 12 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
104103oveq1d 6857 . . . . . . . . . . 11 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1) = (𝑀 − 1))
105104oveq2d 6858 . . . . . . . . . 10 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)) = (0..^(𝑀 − 1)))
106105raleqdv 3292 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10799, 106mpbird 248 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10824, 70, 102syl2anc 579 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
10985eqcomd 2771 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 = ((𝑀 − 1) + 1))
110109ad2antrl 719 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 = ((𝑀 − 1) + 1))
111108, 110eqtrd 2799 . . . . . . . . 9 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
112111adantlr 706 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
1136, 107, 1123jca 1158 . . . . . . 7 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
114113ex 401 . . . . . 6 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1151143adant3 1162 . . . . 5 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1163, 115syl 17 . . . 4 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
117116impcom 396 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
118 nnm1nn0 11581 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
119118ad2antrr 717 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑀 − 1) ∈ ℕ0)
1201, 2iswwlksnx 27024 . . . 4 ((𝑀 − 1) ∈ ℕ0 → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
121119, 120syl 17 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
122117, 121mpbird 248 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺))
123122ex 401 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wss 3732  {cpr 4336  cop 4340   class class class wbr 4809  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192  cle 10329  cmin 10520  cn 11274  0cn0 11538  cz 11624  cuz 11886  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13486  lastSclsw 13533   substr csubstr 13616  Vtxcvtx 26165  Edgcedg 26216   WWalksN cwwlksn 27010   ClWWalksN cclwwlkn 27230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-substr 13617  df-wwlks 27014  df-wwlksn 27015  df-clwwlk 27188  df-clwwlkn 27232
This theorem is referenced by:  numclwlk2lem2f  27620  numclwlk2lem2fOLD  27627
  Copyright terms: Public domain W3C validator