Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . . 7
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | efgval.r |
. . . . . . 7
⊢ ∼ = (
~FG ‘𝐼) |
3 | | efgval2.m |
. . . . . . 7
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
4 | | efgval2.t |
. . . . . . 7
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
5 | | efgred.d |
. . . . . . 7
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
6 | | efgred.s |
. . . . . . 7
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
7 | 1, 2, 3, 4, 5, 6 | efgsdm 19251 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
8 | 7 | simp1bi 1143 |
. . . . 5
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) |
9 | 8 | eldifad 3895 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ Word 𝑊) |
10 | 1, 2, 3, 4, 5, 6 | efgsf 19250 |
. . . . . . . . . . 11
⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 |
11 | 10 | fdmi 6596 |
. . . . . . . . . . . 12
⊢ dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} |
12 | 11 | feq2i 6576 |
. . . . . . . . . . 11
⊢ (𝑆:dom 𝑆⟶𝑊 ↔ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊) |
13 | 10, 12 | mpbir 230 |
. . . . . . . . . 10
⊢ 𝑆:dom 𝑆⟶𝑊 |
14 | 13 | ffvelrni 6942 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) ∈ 𝑊) |
15 | 1, 2, 3, 4 | efgtf 19243 |
. . . . . . . . 9
⊢ ((𝑆‘𝐹) ∈ 𝑊 → ((𝑇‘(𝑆‘𝐹)) = (𝑎 ∈ (0...(♯‘(𝑆‘𝐹))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆‘𝐹) splice 〈𝑎, 𝑎, 〈“𝑖(𝑀‘𝑖)”〉〉)) ∧ (𝑇‘(𝑆‘𝐹)):((0...(♯‘(𝑆‘𝐹))) × (𝐼 × 2o))⟶𝑊)) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (𝐹 ∈ dom 𝑆 → ((𝑇‘(𝑆‘𝐹)) = (𝑎 ∈ (0...(♯‘(𝑆‘𝐹))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆‘𝐹) splice 〈𝑎, 𝑎, 〈“𝑖(𝑀‘𝑖)”〉〉)) ∧ (𝑇‘(𝑆‘𝐹)):((0...(♯‘(𝑆‘𝐹))) × (𝐼 × 2o))⟶𝑊)) |
17 | 16 | simprd 495 |
. . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → (𝑇‘(𝑆‘𝐹)):((0...(♯‘(𝑆‘𝐹))) × (𝐼 × 2o))⟶𝑊) |
18 | 17 | frnd 6592 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → ran (𝑇‘(𝑆‘𝐹)) ⊆ 𝑊) |
19 | 18 | sselda 3917 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐴 ∈ 𝑊) |
20 | 19 | s1cld 14236 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 〈“𝐴”〉 ∈ Word 𝑊) |
21 | | ccatcl 14205 |
. . . 4
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊) |
22 | 9, 20, 21 | syl2an2r 681 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊) |
23 | | ccatws1n0 14270 |
. . . . 5
⊢ (𝐹 ∈ Word 𝑊 → (𝐹 ++ 〈“𝐴”〉) ≠
∅) |
24 | 9, 23 | syl 17 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → (𝐹 ++ 〈“𝐴”〉) ≠
∅) |
25 | 24 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ≠
∅) |
26 | | eldifsn 4717 |
. . 3
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ (Word
𝑊 ∖ {∅}) ↔
((𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊 ∧ (𝐹 ++ 〈“𝐴”〉) ≠
∅)) |
27 | 22, 25, 26 | sylanbrc 582 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ (Word 𝑊 ∖
{∅})) |
28 | 9 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐹 ∈ Word 𝑊) |
29 | | eldifsni 4720 |
. . . . . . . 8
⊢ (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ≠ ∅) |
30 | 8, 29 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ≠ ∅) |
31 | | len0nnbi 14182 |
. . . . . . . 8
⊢ (𝐹 ∈ Word 𝑊 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ∈
ℕ)) |
32 | 9, 31 | syl 17 |
. . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ∈
ℕ)) |
33 | 30, 32 | mpbid 231 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ ℕ) |
34 | | lbfzo0 13355 |
. . . . . 6
⊢ (0 ∈
(0..^(♯‘𝐹))
↔ (♯‘𝐹)
∈ ℕ) |
35 | 33, 34 | sylibr 233 |
. . . . 5
⊢ (𝐹 ∈ dom 𝑆 → 0 ∈ (0..^(♯‘𝐹))) |
36 | 35 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 0 ∈
(0..^(♯‘𝐹))) |
37 | | ccatval1 14209 |
. . . 4
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) = (𝐹‘0)) |
38 | 28, 20, 36, 37 | syl3anc 1369 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) = (𝐹‘0)) |
39 | 7 | simp2bi 1144 |
. . . 4
⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷) |
40 | 39 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹‘0) ∈ 𝐷) |
41 | 38, 40 | eqeltrd 2839 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) ∈ 𝐷) |
42 | 7 | simp3bi 1145 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
44 | | fzo0ss1 13345 |
. . . . . . . . . . 11
⊢
(1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)) |
45 | 44 | sseli 3913 |
. . . . . . . . . 10
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ 𝑖 ∈
(0..^(♯‘𝐹))) |
46 | | ccatval1 14209 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = (𝐹‘𝑖)) |
47 | 45, 46 | syl3an3 1163 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = (𝐹‘𝑖)) |
48 | | elfzoel2 13315 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (♯‘𝐹)
∈ ℤ) |
49 | | peano2zm 12293 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹)
∈ ℤ → ((♯‘𝐹) − 1) ∈
ℤ) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ ((♯‘𝐹)
− 1) ∈ ℤ) |
51 | 48 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (♯‘𝐹)
∈ ℝ) |
52 | 51 | lem1d 11838 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ ((♯‘𝐹)
− 1) ≤ (♯‘𝐹)) |
53 | | eluz2 12517 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1)) ↔ (((♯‘𝐹) − 1) ∈ ℤ
∧ (♯‘𝐹)
∈ ℤ ∧ ((♯‘𝐹) − 1) ≤ (♯‘𝐹))) |
54 | 50, 48, 52, 53 | syl3anbrc 1341 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1))) |
55 | | fzoss2 13343 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1)) →
(0..^((♯‘𝐹)
− 1)) ⊆ (0..^(♯‘𝐹))) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (0..^((♯‘𝐹) − 1)) ⊆
(0..^(♯‘𝐹))) |
57 | | elfzo1elm1fzo0 13416 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (𝑖 − 1) ∈
(0..^((♯‘𝐹)
− 1))) |
58 | 56, 57 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (𝑖 − 1) ∈
(0..^(♯‘𝐹))) |
59 | | ccatval1 14209 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ (𝑖 − 1) ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) |
60 | 58, 59 | syl3an3 1163 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) |
61 | 60 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1)))) |
62 | 61 | rneqd 5836 |
. . . . . . . . 9
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1)))) |
63 | 47, 62 | eleq12d 2833 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
64 | 63 | 3expa 1116 |
. . . . . . 7
⊢ (((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
65 | 64 | ralbidva 3119 |
. . . . . 6
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
66 | 9, 20, 65 | syl2an2r 681 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) |
67 | 43, 66 | mpbird 256 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
68 | | lencl 14164 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ Word 𝑊 → (♯‘𝐹) ∈
ℕ0) |
69 | 9, 68 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈
ℕ0) |
70 | 69 | nn0cnd 12225 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ ℂ) |
71 | 70 | addid2d 11106 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom 𝑆 → (0 + (♯‘𝐹)) = (♯‘𝐹)) |
72 | 71 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝐹 ∈ dom 𝑆 → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹))) |
73 | 72 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹))) |
74 | | s1len 14239 |
. . . . . . . . . . 11
⊢
(♯‘〈“𝐴”〉) = 1 |
75 | | 1nn 11914 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
76 | 74, 75 | eqeltri 2835 |
. . . . . . . . . 10
⊢
(♯‘〈“𝐴”〉) ∈
ℕ |
77 | | lbfzo0 13355 |
. . . . . . . . . 10
⊢ (0 ∈
(0..^(♯‘〈“𝐴”〉)) ↔
(♯‘〈“𝐴”〉) ∈
ℕ) |
78 | 76, 77 | mpbir 230 |
. . . . . . . . 9
⊢ 0 ∈
(0..^(♯‘〈“𝐴”〉)) |
79 | 78 | a1i 11 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 0 ∈
(0..^(♯‘〈“𝐴”〉))) |
80 | | ccatval3 14212 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 0 ∈
(0..^(♯‘〈“𝐴”〉))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
(〈“𝐴”〉‘0)) |
81 | 28, 20, 79, 80 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
(〈“𝐴”〉‘0)) |
82 | 73, 81 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) = (〈“𝐴”〉‘0)) |
83 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) |
84 | | s1fv 14243 |
. . . . . . . 8
⊢ (𝐴 ∈ ran (𝑇‘(𝑆‘𝐹)) → (〈“𝐴”〉‘0) = 𝐴) |
85 | 84 | adantl 481 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (〈“𝐴”〉‘0) = 𝐴) |
86 | | fzo0end 13407 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹)
∈ ℕ → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) |
87 | 33, 86 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) |
88 | 87 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) |
89 | | ccatval1 14209 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹)))
→ ((𝐹 ++
〈“𝐴”〉)‘((♯‘𝐹) − 1)) = (𝐹‘((♯‘𝐹) − 1))) |
90 | 28, 20, 88, 89 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)) = (𝐹‘((♯‘𝐹) − 1))) |
91 | 1, 2, 3, 4, 5, 6 | efgsval 19252 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) |
92 | 91 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) |
93 | 90, 92 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)) = (𝑆‘𝐹)) |
94 | 93 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1))) = (𝑇‘(𝑆‘𝐹))) |
95 | 94 | rneqd 5836 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1))) = ran (𝑇‘(𝑆‘𝐹))) |
96 | 83, 85, 95 | 3eltr4d 2854 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (〈“𝐴”〉‘0) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) |
97 | 82, 96 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) |
98 | | fvex 6769 |
. . . . . 6
⊢
(♯‘𝐹)
∈ V |
99 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑖 = (♯‘𝐹) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹))) |
100 | | fvoveq1 7278 |
. . . . . . . . 9
⊢ (𝑖 = (♯‘𝐹) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = ((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1))) |
101 | 100 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑖 = (♯‘𝐹) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) |
102 | 101 | rneqd 5836 |
. . . . . . 7
⊢ (𝑖 = (♯‘𝐹) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) |
103 | 99, 102 | eleq12d 2833 |
. . . . . 6
⊢ (𝑖 = (♯‘𝐹) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) −
1))))) |
104 | 98, 103 | ralsn 4614 |
. . . . 5
⊢
(∀𝑖 ∈
{(♯‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) |
105 | 97, 104 | sylibr 233 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ {(♯‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
106 | | ralunb 4121 |
. . . 4
⊢
(∀𝑖 ∈
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (∀𝑖 ∈
(1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ∧ ∀𝑖 ∈ {(♯‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) |
107 | 67, 105, 106 | sylanbrc 582 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
108 | | ccatlen 14206 |
. . . . . . . 8
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (♯‘(𝐹 ++ 〈“𝐴”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐴”〉))) |
109 | 9, 20, 108 | syl2an2r 681 |
. . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (♯‘(𝐹 ++ 〈“𝐴”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐴”〉))) |
110 | 74 | oveq2i 7266 |
. . . . . . 7
⊢
((♯‘𝐹) +
(♯‘〈“𝐴”〉)) = ((♯‘𝐹) + 1) |
111 | 109, 110 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (♯‘(𝐹 ++ 〈“𝐴”〉)) = ((♯‘𝐹) + 1)) |
112 | 111 | oveq2d 7271 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^(♯‘(𝐹 ++ 〈“𝐴”〉))) =
(1..^((♯‘𝐹) +
1))) |
113 | | nnuz 12550 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
114 | 33, 113 | eleqtrdi 2849 |
. . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈
(ℤ≥‘1)) |
115 | | fzosplitsn 13423 |
. . . . . . 7
⊢
((♯‘𝐹)
∈ (ℤ≥‘1) → (1..^((♯‘𝐹) + 1)) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) |
116 | 114, 115 | syl 17 |
. . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → (1..^((♯‘𝐹) + 1)) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) |
117 | 116 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^((♯‘𝐹) + 1)) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) |
118 | 112, 117 | eqtrd 2778 |
. . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^(♯‘(𝐹 ++ 〈“𝐴”〉))) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) |
119 | 118 | raleqdv 3339 |
. . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (∀𝑖 ∈ (1..^(♯‘(𝐹 ++ 〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) |
120 | 107, 119 | mpbird 256 |
. 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘(𝐹 ++ 〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) |
121 | 1, 2, 3, 4, 5, 6 | efgsdm 19251 |
. 2
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆 ↔ ((𝐹 ++ 〈“𝐴”〉) ∈ (Word 𝑊 ∖ {∅}) ∧
((𝐹 ++ 〈“𝐴”〉)‘0) ∈
𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘(𝐹 ++
〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) |
122 | 27, 41, 120, 121 | syl3anbrc 1341 |
1
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆) |