Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . . . . 7
β’ π = ( I βWord (πΌ Γ
2o)) |
2 | | efgval.r |
. . . . . . 7
β’ βΌ = (
~FG βπΌ) |
3 | | efgval2.m |
. . . . . . 7
β’ π = (π¦ β πΌ, π§ β 2o β¦ β¨π¦, (1o β π§)β©) |
4 | | efgval2.t |
. . . . . . 7
β’ π = (π£ β π β¦ (π β (0...(β―βπ£)), π€ β (πΌ Γ 2o) β¦ (π£ splice β¨π, π, β¨βπ€(πβπ€)ββ©β©))) |
5 | | efgred.d |
. . . . . . 7
β’ π· = (π β βͺ
π₯ β π ran (πβπ₯)) |
6 | | efgred.s |
. . . . . . 7
β’ π = (π β {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} β¦ (πβ((β―βπ) β 1))) |
7 | 1, 2, 3, 4, 5, 6 | efgsdm 19592 |
. . . . . 6
β’ (πΉ β dom π β (πΉ β (Word π β {β
}) β§ (πΉβ0) β π· β§ βπ β (1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1))))) |
8 | 7 | simp1bi 1145 |
. . . . 5
β’ (πΉ β dom π β πΉ β (Word π β {β
})) |
9 | 8 | eldifad 3959 |
. . . 4
β’ (πΉ β dom π β πΉ β Word π) |
10 | 1, 2, 3, 4, 5, 6 | efgsf 19591 |
. . . . . . . . . . 11
β’ π:{π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ |
11 | 10 | fdmi 6726 |
. . . . . . . . . . . 12
β’ dom π = {π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))} |
12 | 11 | feq2i 6706 |
. . . . . . . . . . 11
β’ (π:dom πβΆπ β π:{π‘ β (Word π β {β
}) β£ ((π‘β0) β π· β§ βπ β
(1..^(β―βπ‘))(π‘βπ) β ran (πβ(π‘β(π β 1))))}βΆπ) |
13 | 10, 12 | mpbir 230 |
. . . . . . . . . 10
β’ π:dom πβΆπ |
14 | 13 | ffvelcdmi 7082 |
. . . . . . . . 9
β’ (πΉ β dom π β (πβπΉ) β π) |
15 | 1, 2, 3, 4 | efgtf 19584 |
. . . . . . . . 9
β’ ((πβπΉ) β π β ((πβ(πβπΉ)) = (π β (0...(β―β(πβπΉ))), π β (πΌ Γ 2o) β¦ ((πβπΉ) splice β¨π, π, β¨βπ(πβπ)ββ©β©)) β§ (πβ(πβπΉ)):((0...(β―β(πβπΉ))) Γ (πΌ Γ 2o))βΆπ)) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
β’ (πΉ β dom π β ((πβ(πβπΉ)) = (π β (0...(β―β(πβπΉ))), π β (πΌ Γ 2o) β¦ ((πβπΉ) splice β¨π, π, β¨βπ(πβπ)ββ©β©)) β§ (πβ(πβπΉ)):((0...(β―β(πβπΉ))) Γ (πΌ Γ 2o))βΆπ)) |
17 | 16 | simprd 496 |
. . . . . . 7
β’ (πΉ β dom π β (πβ(πβπΉ)):((0...(β―β(πβπΉ))) Γ (πΌ Γ 2o))βΆπ) |
18 | 17 | frnd 6722 |
. . . . . 6
β’ (πΉ β dom π β ran (πβ(πβπΉ)) β π) |
19 | 18 | sselda 3981 |
. . . . 5
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β π΄ β π) |
20 | 19 | s1cld 14549 |
. . . 4
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β β¨βπ΄ββ© β Word π) |
21 | | ccatcl 14520 |
. . . 4
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π) β (πΉ ++ β¨βπ΄ββ©) β Word π) |
22 | 9, 20, 21 | syl2an2r 683 |
. . 3
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (πΉ ++ β¨βπ΄ββ©) β Word π) |
23 | | ccatws1n0 14578 |
. . . . 5
β’ (πΉ β Word π β (πΉ ++ β¨βπ΄ββ©) β
β
) |
24 | 9, 23 | syl 17 |
. . . 4
β’ (πΉ β dom π β (πΉ ++ β¨βπ΄ββ©) β
β
) |
25 | 24 | adantr 481 |
. . 3
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (πΉ ++ β¨βπ΄ββ©) β
β
) |
26 | | eldifsn 4789 |
. . 3
β’ ((πΉ ++ β¨βπ΄ββ©) β (Word
π β {β
}) β
((πΉ ++ β¨βπ΄ββ©) β Word π β§ (πΉ ++ β¨βπ΄ββ©) β
β
)) |
27 | 22, 25, 26 | sylanbrc 583 |
. 2
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (πΉ ++ β¨βπ΄ββ©) β (Word π β
{β
})) |
28 | 9 | adantr 481 |
. . . 4
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β πΉ β Word π) |
29 | | eldifsni 4792 |
. . . . . . . 8
β’ (πΉ β (Word π β {β
}) β πΉ β β
) |
30 | 8, 29 | syl 17 |
. . . . . . 7
β’ (πΉ β dom π β πΉ β β
) |
31 | | len0nnbi 14497 |
. . . . . . . 8
β’ (πΉ β Word π β (πΉ β β
β (β―βπΉ) β
β)) |
32 | 9, 31 | syl 17 |
. . . . . . 7
β’ (πΉ β dom π β (πΉ β β
β (β―βπΉ) β
β)) |
33 | 30, 32 | mpbid 231 |
. . . . . 6
β’ (πΉ β dom π β (β―βπΉ) β β) |
34 | | lbfzo0 13668 |
. . . . . 6
β’ (0 β
(0..^(β―βπΉ))
β (β―βπΉ)
β β) |
35 | 33, 34 | sylibr 233 |
. . . . 5
β’ (πΉ β dom π β 0 β (0..^(β―βπΉ))) |
36 | 35 | adantr 481 |
. . . 4
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β 0 β
(0..^(β―βπΉ))) |
37 | | ccatval1 14523 |
. . . 4
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ 0 β (0..^(β―βπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β0) = (πΉβ0)) |
38 | 28, 20, 36, 37 | syl3anc 1371 |
. . 3
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β0) = (πΉβ0)) |
39 | 7 | simp2bi 1146 |
. . . 4
β’ (πΉ β dom π β (πΉβ0) β π·) |
40 | 39 | adantr 481 |
. . 3
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (πΉβ0) β π·) |
41 | 38, 40 | eqeltrd 2833 |
. 2
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β0) β π·) |
42 | 7 | simp3bi 1147 |
. . . . . 6
β’ (πΉ β dom π β βπ β (1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1)))) |
43 | 42 | adantr 481 |
. . . . 5
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β βπ β (1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1)))) |
44 | | fzo0ss1 13658 |
. . . . . . . . . . 11
β’
(1..^(β―βπΉ)) β (0..^(β―βπΉ)) |
45 | 44 | sseli 3977 |
. . . . . . . . . 10
β’ (π β
(1..^(β―βπΉ))
β π β
(0..^(β―βπΉ))) |
46 | | ccatval1 14523 |
. . . . . . . . . 10
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ π β (0..^(β―βπΉ))) β ((πΉ ++ β¨βπ΄ββ©)βπ) = (πΉβπ)) |
47 | 45, 46 | syl3an3 1165 |
. . . . . . . . 9
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ π β (1..^(β―βπΉ))) β ((πΉ ++ β¨βπ΄ββ©)βπ) = (πΉβπ)) |
48 | | elfzoel2 13627 |
. . . . . . . . . . . . . . . 16
β’ (π β
(1..^(β―βπΉ))
β (β―βπΉ)
β β€) |
49 | | peano2zm 12601 |
. . . . . . . . . . . . . . . 16
β’
((β―βπΉ)
β β€ β ((β―βπΉ) β 1) β
β€) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β
(1..^(β―βπΉ))
β ((β―βπΉ)
β 1) β β€) |
51 | 48 | zred 12662 |
. . . . . . . . . . . . . . . 16
β’ (π β
(1..^(β―βπΉ))
β (β―βπΉ)
β β) |
52 | 51 | lem1d 12143 |
. . . . . . . . . . . . . . 15
β’ (π β
(1..^(β―βπΉ))
β ((β―βπΉ)
β 1) β€ (β―βπΉ)) |
53 | | eluz2 12824 |
. . . . . . . . . . . . . . 15
β’
((β―βπΉ)
β (β€β₯β((β―βπΉ) β 1)) β (((β―βπΉ) β 1) β β€
β§ (β―βπΉ)
β β€ β§ ((β―βπΉ) β 1) β€ (β―βπΉ))) |
54 | 50, 48, 52, 53 | syl3anbrc 1343 |
. . . . . . . . . . . . . 14
β’ (π β
(1..^(β―βπΉ))
β (β―βπΉ)
β (β€β₯β((β―βπΉ) β 1))) |
55 | | fzoss2 13656 |
. . . . . . . . . . . . . 14
β’
((β―βπΉ)
β (β€β₯β((β―βπΉ) β 1)) β
(0..^((β―βπΉ)
β 1)) β (0..^(β―βπΉ))) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β
(1..^(β―βπΉ))
β (0..^((β―βπΉ) β 1)) β
(0..^(β―βπΉ))) |
57 | | elfzo1elm1fzo0 13729 |
. . . . . . . . . . . . 13
β’ (π β
(1..^(β―βπΉ))
β (π β 1) β
(0..^((β―βπΉ)
β 1))) |
58 | 56, 57 | sseldd 3982 |
. . . . . . . . . . . 12
β’ (π β
(1..^(β―βπΉ))
β (π β 1) β
(0..^(β―βπΉ))) |
59 | | ccatval1 14523 |
. . . . . . . . . . . 12
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ (π β 1) β (0..^(β―βπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β(π β 1)) = (πΉβ(π β 1))) |
60 | 58, 59 | syl3an3 1165 |
. . . . . . . . . . 11
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ π β (1..^(β―βπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β(π β 1)) = (πΉβ(π β 1))) |
61 | 60 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ π β (1..^(β―βπΉ))) β (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) = (πβ(πΉβ(π β 1)))) |
62 | 61 | rneqd 5935 |
. . . . . . . . 9
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ π β (1..^(β―βπΉ))) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) = ran (πβ(πΉβ(π β 1)))) |
63 | 47, 62 | eleq12d 2827 |
. . . . . . . 8
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ π β (1..^(β―βπΉ))) β (((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β (πΉβπ) β ran (πβ(πΉβ(π β 1))))) |
64 | 63 | 3expa 1118 |
. . . . . . 7
β’ (((πΉ β Word π β§ β¨βπ΄ββ© β Word π) β§ π β (1..^(β―βπΉ))) β (((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β (πΉβπ) β ran (πβ(πΉβ(π β 1))))) |
65 | 64 | ralbidva 3175 |
. . . . . 6
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π) β (βπ β (1..^(β―βπΉ))((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β βπ β
(1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1))))) |
66 | 9, 20, 65 | syl2an2r 683 |
. . . . 5
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (βπ β (1..^(β―βπΉ))((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β βπ β
(1..^(β―βπΉ))(πΉβπ) β ran (πβ(πΉβ(π β 1))))) |
67 | 43, 66 | mpbird 256 |
. . . 4
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β βπ β (1..^(β―βπΉ))((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1)))) |
68 | | lencl 14479 |
. . . . . . . . . . . 12
β’ (πΉ β Word π β (β―βπΉ) β
β0) |
69 | 9, 68 | syl 17 |
. . . . . . . . . . 11
β’ (πΉ β dom π β (β―βπΉ) β
β0) |
70 | 69 | nn0cnd 12530 |
. . . . . . . . . 10
β’ (πΉ β dom π β (β―βπΉ) β β) |
71 | 70 | addlidd 11411 |
. . . . . . . . 9
β’ (πΉ β dom π β (0 + (β―βπΉ)) = (β―βπΉ)) |
72 | 71 | fveq2d 6892 |
. . . . . . . 8
β’ (πΉ β dom π β ((πΉ ++ β¨βπ΄ββ©)β(0 +
(β―βπΉ))) =
((πΉ ++ β¨βπ΄ββ©)β(β―βπΉ))) |
73 | 72 | adantr 481 |
. . . . . . 7
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β(0 +
(β―βπΉ))) =
((πΉ ++ β¨βπ΄ββ©)β(β―βπΉ))) |
74 | | s1len 14552 |
. . . . . . . . . . 11
β’
(β―ββ¨βπ΄ββ©) = 1 |
75 | | 1nn 12219 |
. . . . . . . . . . 11
β’ 1 β
β |
76 | 74, 75 | eqeltri 2829 |
. . . . . . . . . 10
β’
(β―ββ¨βπ΄ββ©) β
β |
77 | | lbfzo0 13668 |
. . . . . . . . . 10
β’ (0 β
(0..^(β―ββ¨βπ΄ββ©)) β
(β―ββ¨βπ΄ββ©) β
β) |
78 | 76, 77 | mpbir 230 |
. . . . . . . . 9
β’ 0 β
(0..^(β―ββ¨βπ΄ββ©)) |
79 | 78 | a1i 11 |
. . . . . . . 8
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β 0 β
(0..^(β―ββ¨βπ΄ββ©))) |
80 | | ccatval3 14525 |
. . . . . . . 8
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ 0 β
(0..^(β―ββ¨βπ΄ββ©))) β ((πΉ ++ β¨βπ΄ββ©)β(0 +
(β―βπΉ))) =
(β¨βπ΄ββ©β0)) |
81 | 28, 20, 79, 80 | syl3anc 1371 |
. . . . . . 7
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β(0 +
(β―βπΉ))) =
(β¨βπ΄ββ©β0)) |
82 | 73, 81 | eqtr3d 2774 |
. . . . . 6
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β(β―βπΉ)) = (β¨βπ΄ββ©β0)) |
83 | | simpr 485 |
. . . . . . 7
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β π΄ β ran (πβ(πβπΉ))) |
84 | | s1fv 14556 |
. . . . . . . 8
β’ (π΄ β ran (πβ(πβπΉ)) β (β¨βπ΄ββ©β0) = π΄) |
85 | 84 | adantl 482 |
. . . . . . 7
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (β¨βπ΄ββ©β0) = π΄) |
86 | | fzo0end 13720 |
. . . . . . . . . . . . 13
β’
((β―βπΉ)
β β β ((β―βπΉ) β 1) β
(0..^(β―βπΉ))) |
87 | 33, 86 | syl 17 |
. . . . . . . . . . . 12
β’ (πΉ β dom π β ((β―βπΉ) β 1) β
(0..^(β―βπΉ))) |
88 | 87 | adantr 481 |
. . . . . . . . . . 11
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((β―βπΉ) β 1) β
(0..^(β―βπΉ))) |
89 | | ccatval1 14523 |
. . . . . . . . . . 11
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π β§ ((β―βπΉ) β 1) β
(0..^(β―βπΉ)))
β ((πΉ ++
β¨βπ΄ββ©)β((β―βπΉ) β 1)) = (πΉβ((β―βπΉ) β 1))) |
90 | 28, 20, 88, 89 | syl3anc 1371 |
. . . . . . . . . 10
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1)) = (πΉβ((β―βπΉ) β 1))) |
91 | 1, 2, 3, 4, 5, 6 | efgsval 19593 |
. . . . . . . . . . 11
β’ (πΉ β dom π β (πβπΉ) = (πΉβ((β―βπΉ) β 1))) |
92 | 91 | adantr 481 |
. . . . . . . . . 10
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (πβπΉ) = (πΉβ((β―βπΉ) β 1))) |
93 | 90, 92 | eqtr4d 2775 |
. . . . . . . . 9
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1)) = (πβπΉ)) |
94 | 93 | fveq2d 6892 |
. . . . . . . 8
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1))) = (πβ(πβπΉ))) |
95 | 94 | rneqd 5935 |
. . . . . . 7
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1))) = ran (πβ(πβπΉ))) |
96 | 83, 85, 95 | 3eltr4d 2848 |
. . . . . 6
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (β¨βπ΄ββ©β0) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1)))) |
97 | 82, 96 | eqeltrd 2833 |
. . . . 5
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β ((πΉ ++ β¨βπ΄ββ©)β(β―βπΉ)) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1)))) |
98 | | fvex 6901 |
. . . . . 6
β’
(β―βπΉ)
β V |
99 | | fveq2 6888 |
. . . . . . 7
β’ (π = (β―βπΉ) β ((πΉ ++ β¨βπ΄ββ©)βπ) = ((πΉ ++ β¨βπ΄ββ©)β(β―βπΉ))) |
100 | | fvoveq1 7428 |
. . . . . . . . 9
β’ (π = (β―βπΉ) β ((πΉ ++ β¨βπ΄ββ©)β(π β 1)) = ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1))) |
101 | 100 | fveq2d 6892 |
. . . . . . . 8
β’ (π = (β―βπΉ) β (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) = (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1)))) |
102 | 101 | rneqd 5935 |
. . . . . . 7
β’ (π = (β―βπΉ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) = ran (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1)))) |
103 | 99, 102 | eleq12d 2827 |
. . . . . 6
β’ (π = (β―βπΉ) β (((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β ((πΉ ++ β¨βπ΄ββ©)β(β―βπΉ)) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β
1))))) |
104 | 98, 103 | ralsn 4684 |
. . . . 5
β’
(βπ β
{(β―βπΉ)} ((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β ((πΉ ++ β¨βπ΄ββ©)β(β―βπΉ)) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β((β―βπΉ) β 1)))) |
105 | 97, 104 | sylibr 233 |
. . . 4
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β βπ β {(β―βπΉ)} ((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1)))) |
106 | | ralunb 4190 |
. . . 4
β’
(βπ β
((1..^(β―βπΉ))
βͺ {(β―βπΉ)})((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β (βπ β
(1..^(β―βπΉ))((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β§ βπ β {(β―βπΉ)} ((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))))) |
107 | 67, 105, 106 | sylanbrc 583 |
. . 3
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β βπ β ((1..^(β―βπΉ)) βͺ {(β―βπΉ)})((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1)))) |
108 | | ccatlen 14521 |
. . . . . . . 8
β’ ((πΉ β Word π β§ β¨βπ΄ββ© β Word π) β (β―β(πΉ ++ β¨βπ΄ββ©)) = ((β―βπΉ) +
(β―ββ¨βπ΄ββ©))) |
109 | 9, 20, 108 | syl2an2r 683 |
. . . . . . 7
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (β―β(πΉ ++ β¨βπ΄ββ©)) = ((β―βπΉ) +
(β―ββ¨βπ΄ββ©))) |
110 | 74 | oveq2i 7416 |
. . . . . . 7
β’
((β―βπΉ) +
(β―ββ¨βπ΄ββ©)) = ((β―βπΉ) + 1) |
111 | 109, 110 | eqtrdi 2788 |
. . . . . 6
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (β―β(πΉ ++ β¨βπ΄ββ©)) = ((β―βπΉ) + 1)) |
112 | 111 | oveq2d 7421 |
. . . . 5
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (1..^(β―β(πΉ ++ β¨βπ΄ββ©))) =
(1..^((β―βπΉ) +
1))) |
113 | | nnuz 12861 |
. . . . . . . 8
β’ β =
(β€β₯β1) |
114 | 33, 113 | eleqtrdi 2843 |
. . . . . . 7
β’ (πΉ β dom π β (β―βπΉ) β
(β€β₯β1)) |
115 | | fzosplitsn 13736 |
. . . . . . 7
β’
((β―βπΉ)
β (β€β₯β1) β (1..^((β―βπΉ) + 1)) =
((1..^(β―βπΉ))
βͺ {(β―βπΉ)})) |
116 | 114, 115 | syl 17 |
. . . . . 6
β’ (πΉ β dom π β (1..^((β―βπΉ) + 1)) =
((1..^(β―βπΉ))
βͺ {(β―βπΉ)})) |
117 | 116 | adantr 481 |
. . . . 5
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (1..^((β―βπΉ) + 1)) =
((1..^(β―βπΉ))
βͺ {(β―βπΉ)})) |
118 | 112, 117 | eqtrd 2772 |
. . . 4
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (1..^(β―β(πΉ ++ β¨βπ΄ββ©))) =
((1..^(β―βπΉ))
βͺ {(β―βπΉ)})) |
119 | 118 | raleqdv 3325 |
. . 3
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (βπ β (1..^(β―β(πΉ ++ β¨βπ΄ββ©)))((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))) β βπ β
((1..^(β―βπΉ))
βͺ {(β―βπΉ)})((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))))) |
120 | 107, 119 | mpbird 256 |
. 2
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β βπ β (1..^(β―β(πΉ ++ β¨βπ΄ββ©)))((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1)))) |
121 | 1, 2, 3, 4, 5, 6 | efgsdm 19592 |
. 2
β’ ((πΉ ++ β¨βπ΄ββ©) β dom π β ((πΉ ++ β¨βπ΄ββ©) β (Word π β {β
}) β§
((πΉ ++ β¨βπ΄ββ©)β0) β
π· β§ βπ β
(1..^(β―β(πΉ ++
β¨βπ΄ββ©)))((πΉ ++ β¨βπ΄ββ©)βπ) β ran (πβ((πΉ ++ β¨βπ΄ββ©)β(π β 1))))) |
122 | 27, 41, 120, 121 | syl3anbrc 1343 |
1
β’ ((πΉ β dom π β§ π΄ β ran (πβ(πβπΉ))) β (πΉ ++ β¨βπ΄ββ©) β dom π) |