| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | efgval.w | . . . . . . 7
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) | 
| 2 |  | efgval.r | . . . . . . 7
⊢  ∼ = (
~FG ‘𝐼) | 
| 3 |  | efgval2.m | . . . . . . 7
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) | 
| 4 |  | efgval2.t | . . . . . . 7
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) | 
| 5 |  | efgred.d | . . . . . . 7
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) | 
| 6 |  | efgred.s | . . . . . . 7
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) | 
| 7 | 1, 2, 3, 4, 5, 6 | efgsdm 19749 | . . . . . 6
⊢ (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | 
| 8 | 7 | simp1bi 1145 | . . . . 5
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ (Word 𝑊 ∖ {∅})) | 
| 9 | 8 | eldifad 3962 | . . . 4
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ∈ Word 𝑊) | 
| 10 | 1, 2, 3, 4, 5, 6 | efgsf 19748 | . . . . . . . . . . 11
⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 | 
| 11 | 10 | fdmi 6746 | . . . . . . . . . . . 12
⊢ dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} | 
| 12 | 11 | feq2i 6727 | . . . . . . . . . . 11
⊢ (𝑆:dom 𝑆⟶𝑊 ↔ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊) | 
| 13 | 10, 12 | mpbir 231 | . . . . . . . . . 10
⊢ 𝑆:dom 𝑆⟶𝑊 | 
| 14 | 13 | ffvelcdmi 7102 | . . . . . . . . 9
⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) ∈ 𝑊) | 
| 15 | 1, 2, 3, 4 | efgtf 19741 | . . . . . . . . 9
⊢ ((𝑆‘𝐹) ∈ 𝑊 → ((𝑇‘(𝑆‘𝐹)) = (𝑎 ∈ (0...(♯‘(𝑆‘𝐹))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆‘𝐹) splice 〈𝑎, 𝑎, 〈“𝑖(𝑀‘𝑖)”〉〉)) ∧ (𝑇‘(𝑆‘𝐹)):((0...(♯‘(𝑆‘𝐹))) × (𝐼 × 2o))⟶𝑊)) | 
| 16 | 14, 15 | syl 17 | . . . . . . . 8
⊢ (𝐹 ∈ dom 𝑆 → ((𝑇‘(𝑆‘𝐹)) = (𝑎 ∈ (0...(♯‘(𝑆‘𝐹))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆‘𝐹) splice 〈𝑎, 𝑎, 〈“𝑖(𝑀‘𝑖)”〉〉)) ∧ (𝑇‘(𝑆‘𝐹)):((0...(♯‘(𝑆‘𝐹))) × (𝐼 × 2o))⟶𝑊)) | 
| 17 | 16 | simprd 495 | . . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → (𝑇‘(𝑆‘𝐹)):((0...(♯‘(𝑆‘𝐹))) × (𝐼 × 2o))⟶𝑊) | 
| 18 | 17 | frnd 6743 | . . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → ran (𝑇‘(𝑆‘𝐹)) ⊆ 𝑊) | 
| 19 | 18 | sselda 3982 | . . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐴 ∈ 𝑊) | 
| 20 | 19 | s1cld 14642 | . . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 〈“𝐴”〉 ∈ Word 𝑊) | 
| 21 |  | ccatcl 14613 | . . . 4
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊) | 
| 22 | 9, 20, 21 | syl2an2r 685 | . . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊) | 
| 23 |  | ccatws1n0 14671 | . . . . 5
⊢ (𝐹 ∈ Word 𝑊 → (𝐹 ++ 〈“𝐴”〉) ≠
∅) | 
| 24 | 9, 23 | syl 17 | . . . 4
⊢ (𝐹 ∈ dom 𝑆 → (𝐹 ++ 〈“𝐴”〉) ≠
∅) | 
| 25 | 24 | adantr 480 | . . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ≠
∅) | 
| 26 |  | eldifsn 4785 | . . 3
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ (Word
𝑊 ∖ {∅}) ↔
((𝐹 ++ 〈“𝐴”〉) ∈ Word 𝑊 ∧ (𝐹 ++ 〈“𝐴”〉) ≠
∅)) | 
| 27 | 22, 25, 26 | sylanbrc 583 | . 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ (Word 𝑊 ∖
{∅})) | 
| 28 | 9 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐹 ∈ Word 𝑊) | 
| 29 |  | eldifsni 4789 | . . . . . . . 8
⊢ (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ≠ ∅) | 
| 30 | 8, 29 | syl 17 | . . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → 𝐹 ≠ ∅) | 
| 31 |  | len0nnbi 14590 | . . . . . . . 8
⊢ (𝐹 ∈ Word 𝑊 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ∈
ℕ)) | 
| 32 | 9, 31 | syl 17 | . . . . . . 7
⊢ (𝐹 ∈ dom 𝑆 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ∈
ℕ)) | 
| 33 | 30, 32 | mpbid 232 | . . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ ℕ) | 
| 34 |  | lbfzo0 13740 | . . . . . 6
⊢ (0 ∈
(0..^(♯‘𝐹))
↔ (♯‘𝐹)
∈ ℕ) | 
| 35 | 33, 34 | sylibr 234 | . . . . 5
⊢ (𝐹 ∈ dom 𝑆 → 0 ∈ (0..^(♯‘𝐹))) | 
| 36 | 35 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 0 ∈
(0..^(♯‘𝐹))) | 
| 37 |  | ccatval1 14616 | . . . 4
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) = (𝐹‘0)) | 
| 38 | 28, 20, 36, 37 | syl3anc 1372 | . . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) = (𝐹‘0)) | 
| 39 | 7 | simp2bi 1146 | . . . 4
⊢ (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷) | 
| 40 | 39 | adantr 480 | . . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹‘0) ∈ 𝐷) | 
| 41 | 38, 40 | eqeltrd 2840 | . 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘0) ∈ 𝐷) | 
| 42 | 7 | simp3bi 1147 | . . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) | 
| 43 | 42 | adantr 480 | . . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))) | 
| 44 |  | fzo0ss1 13730 | . . . . . . . . . . 11
⊢
(1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)) | 
| 45 | 44 | sseli 3978 | . . . . . . . . . 10
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ 𝑖 ∈
(0..^(♯‘𝐹))) | 
| 46 |  | ccatval1 14616 | . . . . . . . . . 10
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = (𝐹‘𝑖)) | 
| 47 | 45, 46 | syl3an3 1165 | . . . . . . . . 9
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = (𝐹‘𝑖)) | 
| 48 |  | elfzoel2 13699 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (♯‘𝐹)
∈ ℤ) | 
| 49 |  | peano2zm 12662 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹)
∈ ℤ → ((♯‘𝐹) − 1) ∈
ℤ) | 
| 50 | 48, 49 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ ((♯‘𝐹)
− 1) ∈ ℤ) | 
| 51 | 48 | zred 12724 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (♯‘𝐹)
∈ ℝ) | 
| 52 | 51 | lem1d 12202 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ ((♯‘𝐹)
− 1) ≤ (♯‘𝐹)) | 
| 53 |  | eluz2 12885 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1)) ↔ (((♯‘𝐹) − 1) ∈ ℤ
∧ (♯‘𝐹)
∈ ℤ ∧ ((♯‘𝐹) − 1) ≤ (♯‘𝐹))) | 
| 54 | 50, 48, 52, 53 | syl3anbrc 1343 | . . . . . . . . . . . . . 14
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1))) | 
| 55 |  | fzoss2 13728 | . . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ (ℤ≥‘((♯‘𝐹) − 1)) →
(0..^((♯‘𝐹)
− 1)) ⊆ (0..^(♯‘𝐹))) | 
| 56 | 54, 55 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (0..^((♯‘𝐹) − 1)) ⊆
(0..^(♯‘𝐹))) | 
| 57 |  | elfzo1elm1fzo0 13808 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (𝑖 − 1) ∈
(0..^((♯‘𝐹)
− 1))) | 
| 58 | 56, 57 | sseldd 3983 | . . . . . . . . . . . 12
⊢ (𝑖 ∈
(1..^(♯‘𝐹))
→ (𝑖 − 1) ∈
(0..^(♯‘𝐹))) | 
| 59 |  | ccatval1 14616 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ (𝑖 − 1) ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) | 
| 60 | 58, 59 | syl3an3 1165 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1))) | 
| 61 | 60 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1)))) | 
| 62 | 61 | rneqd 5948 | . . . . . . . . 9
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1)))) | 
| 63 | 47, 62 | eleq12d 2834 | . . . . . . . 8
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | 
| 64 | 63 | 3expa 1118 | . . . . . . 7
⊢ (((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | 
| 65 | 64 | ralbidva 3175 | . . . . . 6
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | 
| 66 | 9, 20, 65 | syl2an2r 685 | . . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ∀𝑖 ∈
(1..^(♯‘𝐹))(𝐹‘𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))) | 
| 67 | 43, 66 | mpbird 257 | . . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) | 
| 68 |  | lencl 14572 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ Word 𝑊 → (♯‘𝐹) ∈
ℕ0) | 
| 69 | 9, 68 | syl 17 | . . . . . . . . . . 11
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈
ℕ0) | 
| 70 | 69 | nn0cnd 12591 | . . . . . . . . . 10
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ ℂ) | 
| 71 | 70 | addlidd 11463 | . . . . . . . . 9
⊢ (𝐹 ∈ dom 𝑆 → (0 + (♯‘𝐹)) = (♯‘𝐹)) | 
| 72 | 71 | fveq2d 6909 | . . . . . . . 8
⊢ (𝐹 ∈ dom 𝑆 → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹))) | 
| 73 | 72 | adantr 480 | . . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹))) | 
| 74 |  | s1len 14645 | . . . . . . . . . . 11
⊢
(♯‘〈“𝐴”〉) = 1 | 
| 75 |  | 1nn 12278 | . . . . . . . . . . 11
⊢ 1 ∈
ℕ | 
| 76 | 74, 75 | eqeltri 2836 | . . . . . . . . . 10
⊢
(♯‘〈“𝐴”〉) ∈
ℕ | 
| 77 |  | lbfzo0 13740 | . . . . . . . . . 10
⊢ (0 ∈
(0..^(♯‘〈“𝐴”〉)) ↔
(♯‘〈“𝐴”〉) ∈
ℕ) | 
| 78 | 76, 77 | mpbir 231 | . . . . . . . . 9
⊢ 0 ∈
(0..^(♯‘〈“𝐴”〉)) | 
| 79 | 78 | a1i 11 | . . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 0 ∈
(0..^(♯‘〈“𝐴”〉))) | 
| 80 |  | ccatval3 14618 | . . . . . . . 8
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ 0 ∈
(0..^(♯‘〈“𝐴”〉))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
(〈“𝐴”〉‘0)) | 
| 81 | 28, 20, 79, 80 | syl3anc 1372 | . . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(0 +
(♯‘𝐹))) =
(〈“𝐴”〉‘0)) | 
| 82 | 73, 81 | eqtr3d 2778 | . . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) = (〈“𝐴”〉‘0)) | 
| 83 |  | simpr 484 | . . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) | 
| 84 |  | s1fv 14649 | . . . . . . . 8
⊢ (𝐴 ∈ ran (𝑇‘(𝑆‘𝐹)) → (〈“𝐴”〉‘0) = 𝐴) | 
| 85 | 84 | adantl 481 | . . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (〈“𝐴”〉‘0) = 𝐴) | 
| 86 |  | fzo0end 13798 | . . . . . . . . . . . . 13
⊢
((♯‘𝐹)
∈ ℕ → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) | 
| 87 | 33, 86 | syl 17 | . . . . . . . . . . . 12
⊢ (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) | 
| 88 | 87 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹))) | 
| 89 |  | ccatval1 14616 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊 ∧ ((♯‘𝐹) − 1) ∈
(0..^(♯‘𝐹)))
→ ((𝐹 ++
〈“𝐴”〉)‘((♯‘𝐹) − 1)) = (𝐹‘((♯‘𝐹) − 1))) | 
| 90 | 28, 20, 88, 89 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)) = (𝐹‘((♯‘𝐹) − 1))) | 
| 91 | 1, 2, 3, 4, 5, 6 | efgsval 19750 | . . . . . . . . . . 11
⊢ (𝐹 ∈ dom 𝑆 → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) | 
| 92 | 91 | adantr 480 | . . . . . . . . . 10
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑆‘𝐹) = (𝐹‘((♯‘𝐹) − 1))) | 
| 93 | 90, 92 | eqtr4d 2779 | . . . . . . . . 9
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)) = (𝑆‘𝐹)) | 
| 94 | 93 | fveq2d 6909 | . . . . . . . 8
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1))) = (𝑇‘(𝑆‘𝐹))) | 
| 95 | 94 | rneqd 5948 | . . . . . . 7
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1))) = ran (𝑇‘(𝑆‘𝐹))) | 
| 96 | 83, 85, 95 | 3eltr4d 2855 | . . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (〈“𝐴”〉‘0) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) | 
| 97 | 82, 96 | eqeltrd 2840 | . . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) | 
| 98 |  | fvex 6918 | . . . . . 6
⊢
(♯‘𝐹)
∈ V | 
| 99 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑖 = (♯‘𝐹) → ((𝐹 ++ 〈“𝐴”〉)‘𝑖) = ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹))) | 
| 100 |  | fvoveq1 7455 | . . . . . . . . 9
⊢ (𝑖 = (♯‘𝐹) → ((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)) = ((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1))) | 
| 101 | 100 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑖 = (♯‘𝐹) → (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) | 
| 102 | 101 | rneqd 5948 | . . . . . . 7
⊢ (𝑖 = (♯‘𝐹) → ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) = ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) | 
| 103 | 99, 102 | eleq12d 2834 | . . . . . 6
⊢ (𝑖 = (♯‘𝐹) → (((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) −
1))))) | 
| 104 | 98, 103 | ralsn 4680 | . . . . 5
⊢
(∀𝑖 ∈
{(♯‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ ((𝐹 ++ 〈“𝐴”〉)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘((♯‘𝐹) − 1)))) | 
| 105 | 97, 104 | sylibr 234 | . . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ {(♯‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) | 
| 106 |  | ralunb 4196 | . . . 4
⊢
(∀𝑖 ∈
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ↔ (∀𝑖 ∈
(1..^(♯‘𝐹))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))) ∧ ∀𝑖 ∈ {(♯‘𝐹)} ((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) | 
| 107 | 67, 105, 106 | sylanbrc 583 | . . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) | 
| 108 |  | ccatlen 14614 | . . . . . . 7
⊢ ((𝐹 ∈ Word 𝑊 ∧ 〈“𝐴”〉 ∈ Word 𝑊) → (♯‘(𝐹 ++ 〈“𝐴”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐴”〉))) | 
| 109 | 9, 20, 108 | syl2an2r 685 | . . . . . 6
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (♯‘(𝐹 ++ 〈“𝐴”〉)) = ((♯‘𝐹) +
(♯‘〈“𝐴”〉))) | 
| 110 | 74 | oveq2i 7443 | . . . . . 6
⊢
((♯‘𝐹) +
(♯‘〈“𝐴”〉)) = ((♯‘𝐹) + 1) | 
| 111 | 109, 110 | eqtrdi 2792 | . . . . 5
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (♯‘(𝐹 ++ 〈“𝐴”〉)) = ((♯‘𝐹) + 1)) | 
| 112 | 111 | oveq2d 7448 | . . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^(♯‘(𝐹 ++ 〈“𝐴”〉))) =
(1..^((♯‘𝐹) +
1))) | 
| 113 |  | nnuz 12922 | . . . . . . 7
⊢ ℕ =
(ℤ≥‘1) | 
| 114 | 33, 113 | eleqtrdi 2850 | . . . . . 6
⊢ (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈
(ℤ≥‘1)) | 
| 115 |  | fzosplitsn 13815 | . . . . . 6
⊢
((♯‘𝐹)
∈ (ℤ≥‘1) → (1..^((♯‘𝐹) + 1)) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) | 
| 116 | 114, 115 | syl 17 | . . . . 5
⊢ (𝐹 ∈ dom 𝑆 → (1..^((♯‘𝐹) + 1)) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) | 
| 117 | 116 | adantr 480 | . . . 4
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^((♯‘𝐹) + 1)) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) | 
| 118 | 112, 117 | eqtrd 2776 | . . 3
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (1..^(♯‘(𝐹 ++ 〈“𝐴”〉))) =
((1..^(♯‘𝐹))
∪ {(♯‘𝐹)})) | 
| 119 | 107, 118 | raleqtrrdv 3329 | . 2
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → ∀𝑖 ∈ (1..^(♯‘(𝐹 ++ 〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1)))) | 
| 120 | 1, 2, 3, 4, 5, 6 | efgsdm 19749 | . 2
⊢ ((𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆 ↔ ((𝐹 ++ 〈“𝐴”〉) ∈ (Word 𝑊 ∖ {∅}) ∧
((𝐹 ++ 〈“𝐴”〉)‘0) ∈
𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘(𝐹 ++
〈“𝐴”〉)))((𝐹 ++ 〈“𝐴”〉)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ 〈“𝐴”〉)‘(𝑖 − 1))))) | 
| 121 | 27, 41, 119, 120 | syl3anbrc 1343 | 1
⊢ ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (𝑇‘(𝑆‘𝐹))) → (𝐹 ++ 〈“𝐴”〉) ∈ dom 𝑆) |