MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsp1 Structured version   Visualization version   GIF version

Theorem efgsp1 19723
Description: If 𝐹 is an extension sequence and 𝐴 is an extension of the last element of 𝐹, then 𝐹 + ⟨“𝐴”⟩ is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsp1 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝐹 ++ ⟨“𝐴”⟩) ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsp1
Dummy variables 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . . . . 7 = ( ~FG𝐼)
3 efgval2.m . . . . . . 7 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . . . . 7 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . . . 7 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . . . 7 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsdm 19716 . . . . . 6 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝐹‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
87simp1bi 1145 . . . . 5 (𝐹 ∈ dom 𝑆𝐹 ∈ (Word 𝑊 ∖ {∅}))
98eldifad 3943 . . . 4 (𝐹 ∈ dom 𝑆𝐹 ∈ Word 𝑊)
101, 2, 3, 4, 5, 6efgsf 19715 . . . . . . . . . . 11 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
1110fdmi 6722 . . . . . . . . . . . 12 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
1211feq2i 6703 . . . . . . . . . . 11 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
1310, 12mpbir 231 . . . . . . . . . 10 𝑆:dom 𝑆𝑊
1413ffvelcdmi 7078 . . . . . . . . 9 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) ∈ 𝑊)
151, 2, 3, 4efgtf 19708 . . . . . . . . 9 ((𝑆𝐹) ∈ 𝑊 → ((𝑇‘(𝑆𝐹)) = (𝑎 ∈ (0...(♯‘(𝑆𝐹))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆𝐹) splice ⟨𝑎, 𝑎, ⟨“𝑖(𝑀𝑖)”⟩⟩)) ∧ (𝑇‘(𝑆𝐹)):((0...(♯‘(𝑆𝐹))) × (𝐼 × 2o))⟶𝑊))
1614, 15syl 17 . . . . . . . 8 (𝐹 ∈ dom 𝑆 → ((𝑇‘(𝑆𝐹)) = (𝑎 ∈ (0...(♯‘(𝑆𝐹))), 𝑖 ∈ (𝐼 × 2o) ↦ ((𝑆𝐹) splice ⟨𝑎, 𝑎, ⟨“𝑖(𝑀𝑖)”⟩⟩)) ∧ (𝑇‘(𝑆𝐹)):((0...(♯‘(𝑆𝐹))) × (𝐼 × 2o))⟶𝑊))
1716simprd 495 . . . . . . 7 (𝐹 ∈ dom 𝑆 → (𝑇‘(𝑆𝐹)):((0...(♯‘(𝑆𝐹))) × (𝐼 × 2o))⟶𝑊)
1817frnd 6719 . . . . . 6 (𝐹 ∈ dom 𝑆 → ran (𝑇‘(𝑆𝐹)) ⊆ 𝑊)
1918sselda 3963 . . . . 5 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → 𝐴𝑊)
2019s1cld 14626 . . . 4 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ⟨“𝐴”⟩ ∈ Word 𝑊)
21 ccatcl 14597 . . . 4 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊) → (𝐹 ++ ⟨“𝐴”⟩) ∈ Word 𝑊)
229, 20, 21syl2an2r 685 . . 3 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝐹 ++ ⟨“𝐴”⟩) ∈ Word 𝑊)
23 ccatws1n0 14655 . . . . 5 (𝐹 ∈ Word 𝑊 → (𝐹 ++ ⟨“𝐴”⟩) ≠ ∅)
249, 23syl 17 . . . 4 (𝐹 ∈ dom 𝑆 → (𝐹 ++ ⟨“𝐴”⟩) ≠ ∅)
2524adantr 480 . . 3 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝐹 ++ ⟨“𝐴”⟩) ≠ ∅)
26 eldifsn 4767 . . 3 ((𝐹 ++ ⟨“𝐴”⟩) ∈ (Word 𝑊 ∖ {∅}) ↔ ((𝐹 ++ ⟨“𝐴”⟩) ∈ Word 𝑊 ∧ (𝐹 ++ ⟨“𝐴”⟩) ≠ ∅))
2722, 25, 26sylanbrc 583 . 2 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝐹 ++ ⟨“𝐴”⟩) ∈ (Word 𝑊 ∖ {∅}))
289adantr 480 . . . 4 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → 𝐹 ∈ Word 𝑊)
29 eldifsni 4771 . . . . . . . 8 (𝐹 ∈ (Word 𝑊 ∖ {∅}) → 𝐹 ≠ ∅)
308, 29syl 17 . . . . . . 7 (𝐹 ∈ dom 𝑆𝐹 ≠ ∅)
31 len0nnbi 14574 . . . . . . . 8 (𝐹 ∈ Word 𝑊 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ∈ ℕ))
329, 31syl 17 . . . . . . 7 (𝐹 ∈ dom 𝑆 → (𝐹 ≠ ∅ ↔ (♯‘𝐹) ∈ ℕ))
3330, 32mpbid 232 . . . . . 6 (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ ℕ)
34 lbfzo0 13721 . . . . . 6 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
3533, 34sylibr 234 . . . . 5 (𝐹 ∈ dom 𝑆 → 0 ∈ (0..^(♯‘𝐹)))
3635adantr 480 . . . 4 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → 0 ∈ (0..^(♯‘𝐹)))
37 ccatval1 14600 . . . 4 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘0) = (𝐹‘0))
3828, 20, 36, 37syl3anc 1373 . . 3 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘0) = (𝐹‘0))
397simp2bi 1146 . . . 4 (𝐹 ∈ dom 𝑆 → (𝐹‘0) ∈ 𝐷)
4039adantr 480 . . 3 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝐹‘0) ∈ 𝐷)
4138, 40eqeltrd 2835 . 2 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘0) ∈ 𝐷)
427simp3bi 1147 . . . . . 6 (𝐹 ∈ dom 𝑆 → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
4342adantr 480 . . . . 5 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1))))
44 fzo0ss1 13711 . . . . . . . . . . 11 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
4544sseli 3959 . . . . . . . . . 10 (𝑖 ∈ (1..^(♯‘𝐹)) → 𝑖 ∈ (0..^(♯‘𝐹)))
46 ccatval1 14600 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) = (𝐹𝑖))
4745, 46syl3an3 1165 . . . . . . . . 9 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊𝑖 ∈ (1..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) = (𝐹𝑖))
48 elfzoel2 13680 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
49 peano2zm 12640 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℤ → ((♯‘𝐹) − 1) ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^(♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ ℤ)
5148zred 12702 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
5251lem1d 12180 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^(♯‘𝐹)) → ((♯‘𝐹) − 1) ≤ (♯‘𝐹))
53 eluz2 12863 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)) ↔ (((♯‘𝐹) − 1) ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ ((♯‘𝐹) − 1) ≤ (♯‘𝐹)))
5450, 48, 52, 53syl3anbrc 1344 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)))
55 fzoss2 13709 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
5654, 55syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^(♯‘𝐹)) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
57 elfzo1elm1fzo0 13789 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^(♯‘𝐹)) → (𝑖 − 1) ∈ (0..^((♯‘𝐹) − 1)))
5856, 57sseldd 3964 . . . . . . . . . . . 12 (𝑖 ∈ (1..^(♯‘𝐹)) → (𝑖 − 1) ∈ (0..^(♯‘𝐹)))
59 ccatval1 14600 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊 ∧ (𝑖 − 1) ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
6058, 59syl3an3 1165 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊𝑖 ∈ (1..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1)) = (𝐹‘(𝑖 − 1)))
6160fveq2d 6885 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊𝑖 ∈ (1..^(♯‘𝐹))) → (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) = (𝑇‘(𝐹‘(𝑖 − 1))))
6261rneqd 5923 . . . . . . . . 9 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊𝑖 ∈ (1..^(♯‘𝐹))) → ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) = ran (𝑇‘(𝐹‘(𝑖 − 1))))
6347, 62eleq12d 2829 . . . . . . . 8 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊𝑖 ∈ (1..^(♯‘𝐹))) → (((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
64633expa 1118 . . . . . . 7 (((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊) ∧ 𝑖 ∈ (1..^(♯‘𝐹))) → (((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ↔ (𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
6564ralbidva 3162 . . . . . 6 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊) → (∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
669, 20, 65syl2an2r 685 . . . . 5 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ↔ ∀𝑖 ∈ (1..^(♯‘𝐹))(𝐹𝑖) ∈ ran (𝑇‘(𝐹‘(𝑖 − 1)))))
6743, 66mpbird 257 . . . 4 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))))
68 lencl 14556 . . . . . . . . . . . 12 (𝐹 ∈ Word 𝑊 → (♯‘𝐹) ∈ ℕ0)
699, 68syl 17 . . . . . . . . . . 11 (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ ℕ0)
7069nn0cnd 12569 . . . . . . . . . 10 (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ ℂ)
7170addlidd 11441 . . . . . . . . 9 (𝐹 ∈ dom 𝑆 → (0 + (♯‘𝐹)) = (♯‘𝐹))
7271fveq2d 6885 . . . . . . . 8 (𝐹 ∈ dom 𝑆 → ((𝐹 ++ ⟨“𝐴”⟩)‘(0 + (♯‘𝐹))) = ((𝐹 ++ ⟨“𝐴”⟩)‘(♯‘𝐹)))
7372adantr 480 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘(0 + (♯‘𝐹))) = ((𝐹 ++ ⟨“𝐴”⟩)‘(♯‘𝐹)))
74 s1len 14629 . . . . . . . . . . 11 (♯‘⟨“𝐴”⟩) = 1
75 1nn 12256 . . . . . . . . . . 11 1 ∈ ℕ
7674, 75eqeltri 2831 . . . . . . . . . 10 (♯‘⟨“𝐴”⟩) ∈ ℕ
77 lbfzo0 13721 . . . . . . . . . 10 (0 ∈ (0..^(♯‘⟨“𝐴”⟩)) ↔ (♯‘⟨“𝐴”⟩) ∈ ℕ)
7876, 77mpbir 231 . . . . . . . . 9 0 ∈ (0..^(♯‘⟨“𝐴”⟩))
7978a1i 11 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → 0 ∈ (0..^(♯‘⟨“𝐴”⟩)))
80 ccatval3 14602 . . . . . . . 8 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘⟨“𝐴”⟩))) → ((𝐹 ++ ⟨“𝐴”⟩)‘(0 + (♯‘𝐹))) = (⟨“𝐴”⟩‘0))
8128, 20, 79, 80syl3anc 1373 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘(0 + (♯‘𝐹))) = (⟨“𝐴”⟩‘0))
8273, 81eqtr3d 2773 . . . . . 6 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘(♯‘𝐹)) = (⟨“𝐴”⟩‘0))
83 simpr 484 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → 𝐴 ∈ ran (𝑇‘(𝑆𝐹)))
84 s1fv 14633 . . . . . . . 8 (𝐴 ∈ ran (𝑇‘(𝑆𝐹)) → (⟨“𝐴”⟩‘0) = 𝐴)
8584adantl 481 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (⟨“𝐴”⟩‘0) = 𝐴)
86 fzo0end 13779 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
8733, 86syl 17 . . . . . . . . . . . 12 (𝐹 ∈ dom 𝑆 → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
8887adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
89 ccatval1 14600 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊 ∧ ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1)) = (𝐹‘((♯‘𝐹) − 1)))
9028, 20, 88, 89syl3anc 1373 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1)) = (𝐹‘((♯‘𝐹) − 1)))
911, 2, 3, 4, 5, 6efgsval 19717 . . . . . . . . . . 11 (𝐹 ∈ dom 𝑆 → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9291adantr 480 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝑆𝐹) = (𝐹‘((♯‘𝐹) − 1)))
9390, 92eqtr4d 2774 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1)) = (𝑆𝐹))
9493fveq2d 6885 . . . . . . . 8 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1))) = (𝑇‘(𝑆𝐹)))
9594rneqd 5923 . . . . . . 7 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1))) = ran (𝑇‘(𝑆𝐹)))
9683, 85, 953eltr4d 2850 . . . . . 6 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (⟨“𝐴”⟩‘0) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1))))
9782, 96eqeltrd 2835 . . . . 5 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ((𝐹 ++ ⟨“𝐴”⟩)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1))))
98 fvex 6894 . . . . . 6 (♯‘𝐹) ∈ V
99 fveq2 6881 . . . . . . 7 (𝑖 = (♯‘𝐹) → ((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) = ((𝐹 ++ ⟨“𝐴”⟩)‘(♯‘𝐹)))
100 fvoveq1 7433 . . . . . . . . 9 (𝑖 = (♯‘𝐹) → ((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1)) = ((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1)))
101100fveq2d 6885 . . . . . . . 8 (𝑖 = (♯‘𝐹) → (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) = (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1))))
102101rneqd 5923 . . . . . . 7 (𝑖 = (♯‘𝐹) → ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) = ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1))))
10399, 102eleq12d 2829 . . . . . 6 (𝑖 = (♯‘𝐹) → (((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ↔ ((𝐹 ++ ⟨“𝐴”⟩)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1)))))
10498, 103ralsn 4662 . . . . 5 (∀𝑖 ∈ {(♯‘𝐹)} ((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ↔ ((𝐹 ++ ⟨“𝐴”⟩)‘(♯‘𝐹)) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘((♯‘𝐹) − 1))))
10597, 104sylibr 234 . . . 4 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ∀𝑖 ∈ {(♯‘𝐹)} ((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))))
106 ralunb 4177 . . . 4 (∀𝑖 ∈ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ↔ (∀𝑖 ∈ (1..^(♯‘𝐹))((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))) ∧ ∀𝑖 ∈ {(♯‘𝐹)} ((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1)))))
10767, 105, 106sylanbrc 583 . . 3 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ∀𝑖 ∈ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))))
108 ccatlen 14598 . . . . . . 7 ((𝐹 ∈ Word 𝑊 ∧ ⟨“𝐴”⟩ ∈ Word 𝑊) → (♯‘(𝐹 ++ ⟨“𝐴”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐴”⟩)))
1099, 20, 108syl2an2r 685 . . . . . 6 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (♯‘(𝐹 ++ ⟨“𝐴”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐴”⟩)))
11074oveq2i 7421 . . . . . 6 ((♯‘𝐹) + (♯‘⟨“𝐴”⟩)) = ((♯‘𝐹) + 1)
111109, 110eqtrdi 2787 . . . . 5 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (♯‘(𝐹 ++ ⟨“𝐴”⟩)) = ((♯‘𝐹) + 1))
112111oveq2d 7426 . . . 4 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (1..^(♯‘(𝐹 ++ ⟨“𝐴”⟩))) = (1..^((♯‘𝐹) + 1)))
113 nnuz 12900 . . . . . . 7 ℕ = (ℤ‘1)
11433, 113eleqtrdi 2845 . . . . . 6 (𝐹 ∈ dom 𝑆 → (♯‘𝐹) ∈ (ℤ‘1))
115 fzosplitsn 13796 . . . . . 6 ((♯‘𝐹) ∈ (ℤ‘1) → (1..^((♯‘𝐹) + 1)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
116114, 115syl 17 . . . . 5 (𝐹 ∈ dom 𝑆 → (1..^((♯‘𝐹) + 1)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
117116adantr 480 . . . 4 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (1..^((♯‘𝐹) + 1)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
118112, 117eqtrd 2771 . . 3 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (1..^(♯‘(𝐹 ++ ⟨“𝐴”⟩))) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
119107, 118raleqtrrdv 3313 . 2 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → ∀𝑖 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐴”⟩)))((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1))))
1201, 2, 3, 4, 5, 6efgsdm 19716 . 2 ((𝐹 ++ ⟨“𝐴”⟩) ∈ dom 𝑆 ↔ ((𝐹 ++ ⟨“𝐴”⟩) ∈ (Word 𝑊 ∖ {∅}) ∧ ((𝐹 ++ ⟨“𝐴”⟩)‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘(𝐹 ++ ⟨“𝐴”⟩)))((𝐹 ++ ⟨“𝐴”⟩)‘𝑖) ∈ ran (𝑇‘((𝐹 ++ ⟨“𝐴”⟩)‘(𝑖 − 1)))))
12127, 41, 119, 120syl3anbrc 1344 1 ((𝐹 ∈ dom 𝑆𝐴 ∈ ran (𝑇‘(𝑆𝐹))) → (𝐹 ++ ⟨“𝐴”⟩) ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606  cop 4612  cotp 4614   ciun 4972   class class class wbr 5124  cmpt 5206   I cid 5552   × cxp 5657  dom cdm 5659  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  1oc1o 8478  2oc2o 8479  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cmin 11471  cn 12245  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  ..^cfzo 13676  chash 14353  Word cword 14536   ++ cconcat 14593  ⟨“cs1 14618   splice csplice 14772  ⟨“cs2 14865   ~FG cefg 19692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-splice 14773  df-s2 14872
This theorem is referenced by:  efgsfo  19725  efgredlemd  19730  efgrelexlemb  19736
  Copyright terms: Public domain W3C validator