MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsp1 Structured version   Visualization version   GIF version

Theorem efgsp1 19605
Description: If 𝐹 is an extension sequence and 𝐴 is an extension of the last element of 𝐹, then 𝐹 + βŸ¨β€œπ΄β€βŸ© is an extension sequence. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
Assertion
Ref Expression
efgsp1 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ dom 𝑆)
Distinct variable groups:   𝑦,𝑧   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧,π‘š,π‘₯   π‘š,𝑀   π‘₯,𝑛,𝑀,𝑑,𝑣,𝑀   π‘˜,π‘š,𝑑,π‘₯,𝑇   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘š,𝑑,π‘₯,𝑦,𝑧   π‘š,𝐼,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘š,𝑑
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐹(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝐼(π‘˜)   𝑀(𝑦,𝑧,π‘˜)

Proof of Theorem efgsp1
Dummy variables π‘Ž 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . . . . 7 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
2 efgval.r . . . . . . 7 ∼ = ( ~FG β€˜πΌ)
3 efgval2.m . . . . . . 7 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
4 efgval2.t . . . . . . 7 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
5 efgred.d . . . . . . 7 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
6 efgred.s . . . . . . 7 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
71, 2, 3, 4, 5, 6efgsdm 19598 . . . . . 6 (𝐹 ∈ dom 𝑆 ↔ (𝐹 ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (πΉβ€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))(πΉβ€˜π‘–) ∈ ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1)))))
87simp1bi 1146 . . . . 5 (𝐹 ∈ dom 𝑆 β†’ 𝐹 ∈ (Word π‘Š βˆ– {βˆ…}))
98eldifad 3961 . . . 4 (𝐹 ∈ dom 𝑆 β†’ 𝐹 ∈ Word π‘Š)
101, 2, 3, 4, 5, 6efgsf 19597 . . . . . . . . . . 11 𝑆:{𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))}βŸΆπ‘Š
1110fdmi 6730 . . . . . . . . . . . 12 dom 𝑆 = {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))}
1211feq2i 6710 . . . . . . . . . . 11 (𝑆:dom π‘†βŸΆπ‘Š ↔ 𝑆:{𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))}βŸΆπ‘Š)
1310, 12mpbir 230 . . . . . . . . . 10 𝑆:dom π‘†βŸΆπ‘Š
1413ffvelcdmi 7086 . . . . . . . . 9 (𝐹 ∈ dom 𝑆 β†’ (π‘†β€˜πΉ) ∈ π‘Š)
151, 2, 3, 4efgtf 19590 . . . . . . . . 9 ((π‘†β€˜πΉ) ∈ π‘Š β†’ ((π‘‡β€˜(π‘†β€˜πΉ)) = (π‘Ž ∈ (0...(β™―β€˜(π‘†β€˜πΉ))), 𝑖 ∈ (𝐼 Γ— 2o) ↦ ((π‘†β€˜πΉ) splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘–(π‘€β€˜π‘–)β€βŸ©βŸ©)) ∧ (π‘‡β€˜(π‘†β€˜πΉ)):((0...(β™―β€˜(π‘†β€˜πΉ))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š))
1614, 15syl 17 . . . . . . . 8 (𝐹 ∈ dom 𝑆 β†’ ((π‘‡β€˜(π‘†β€˜πΉ)) = (π‘Ž ∈ (0...(β™―β€˜(π‘†β€˜πΉ))), 𝑖 ∈ (𝐼 Γ— 2o) ↦ ((π‘†β€˜πΉ) splice βŸ¨π‘Ž, π‘Ž, βŸ¨β€œπ‘–(π‘€β€˜π‘–)β€βŸ©βŸ©)) ∧ (π‘‡β€˜(π‘†β€˜πΉ)):((0...(β™―β€˜(π‘†β€˜πΉ))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š))
1716simprd 497 . . . . . . 7 (𝐹 ∈ dom 𝑆 β†’ (π‘‡β€˜(π‘†β€˜πΉ)):((0...(β™―β€˜(π‘†β€˜πΉ))) Γ— (𝐼 Γ— 2o))βŸΆπ‘Š)
1817frnd 6726 . . . . . 6 (𝐹 ∈ dom 𝑆 β†’ ran (π‘‡β€˜(π‘†β€˜πΉ)) βŠ† π‘Š)
1918sselda 3983 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ 𝐴 ∈ π‘Š)
2019s1cld 14553 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š)
21 ccatcl 14524 . . . 4 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š) β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ Word π‘Š)
229, 20, 21syl2an2r 684 . . 3 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ Word π‘Š)
23 ccatws1n0 14582 . . . . 5 (𝐹 ∈ Word π‘Š β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) β‰  βˆ…)
249, 23syl 17 . . . 4 (𝐹 ∈ dom 𝑆 β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) β‰  βˆ…)
2524adantr 482 . . 3 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) β‰  βˆ…)
26 eldifsn 4791 . . 3 ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ (Word π‘Š βˆ– {βˆ…}) ↔ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ Word π‘Š ∧ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) β‰  βˆ…))
2722, 25, 26sylanbrc 584 . 2 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ (Word π‘Š βˆ– {βˆ…}))
289adantr 482 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ 𝐹 ∈ Word π‘Š)
29 eldifsni 4794 . . . . . . . 8 (𝐹 ∈ (Word π‘Š βˆ– {βˆ…}) β†’ 𝐹 β‰  βˆ…)
308, 29syl 17 . . . . . . 7 (𝐹 ∈ dom 𝑆 β†’ 𝐹 β‰  βˆ…)
31 len0nnbi 14501 . . . . . . . 8 (𝐹 ∈ Word π‘Š β†’ (𝐹 β‰  βˆ… ↔ (β™―β€˜πΉ) ∈ β„•))
329, 31syl 17 . . . . . . 7 (𝐹 ∈ dom 𝑆 β†’ (𝐹 β‰  βˆ… ↔ (β™―β€˜πΉ) ∈ β„•))
3330, 32mpbid 231 . . . . . 6 (𝐹 ∈ dom 𝑆 β†’ (β™―β€˜πΉ) ∈ β„•)
34 lbfzo0 13672 . . . . . 6 (0 ∈ (0..^(β™―β€˜πΉ)) ↔ (β™―β€˜πΉ) ∈ β„•)
3533, 34sylibr 233 . . . . 5 (𝐹 ∈ dom 𝑆 β†’ 0 ∈ (0..^(β™―β€˜πΉ)))
3635adantr 482 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ 0 ∈ (0..^(β™―β€˜πΉ)))
37 ccatval1 14527 . . . 4 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 0 ∈ (0..^(β™―β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜0) = (πΉβ€˜0))
3828, 20, 36, 37syl3anc 1372 . . 3 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜0) = (πΉβ€˜0))
397simp2bi 1147 . . . 4 (𝐹 ∈ dom 𝑆 β†’ (πΉβ€˜0) ∈ 𝐷)
4039adantr 482 . . 3 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (πΉβ€˜0) ∈ 𝐷)
4138, 40eqeltrd 2834 . 2 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜0) ∈ 𝐷)
427simp3bi 1148 . . . . . 6 (𝐹 ∈ dom 𝑆 β†’ βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))(πΉβ€˜π‘–) ∈ ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1))))
4342adantr 482 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))(πΉβ€˜π‘–) ∈ ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1))))
44 fzo0ss1 13662 . . . . . . . . . . 11 (1..^(β™―β€˜πΉ)) βŠ† (0..^(β™―β€˜πΉ))
4544sseli 3979 . . . . . . . . . 10 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ 𝑖 ∈ (0..^(β™―β€˜πΉ)))
46 ccatval1 14527 . . . . . . . . . 10 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 𝑖 ∈ (0..^(β™―β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) = (πΉβ€˜π‘–))
4745, 46syl3an3 1166 . . . . . . . . 9 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 𝑖 ∈ (1..^(β™―β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) = (πΉβ€˜π‘–))
48 elfzoel2 13631 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ (β™―β€˜πΉ) ∈ β„€)
49 peano2zm 12605 . . . . . . . . . . . . . . . 16 ((β™―β€˜πΉ) ∈ β„€ β†’ ((β™―β€˜πΉ) βˆ’ 1) ∈ β„€)
5048, 49syl 17 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ ((β™―β€˜πΉ) βˆ’ 1) ∈ β„€)
5148zred 12666 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ (β™―β€˜πΉ) ∈ ℝ)
5251lem1d 12147 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ ((β™―β€˜πΉ) βˆ’ 1) ≀ (β™―β€˜πΉ))
53 eluz2 12828 . . . . . . . . . . . . . . 15 ((β™―β€˜πΉ) ∈ (β„€β‰₯β€˜((β™―β€˜πΉ) βˆ’ 1)) ↔ (((β™―β€˜πΉ) βˆ’ 1) ∈ β„€ ∧ (β™―β€˜πΉ) ∈ β„€ ∧ ((β™―β€˜πΉ) βˆ’ 1) ≀ (β™―β€˜πΉ)))
5450, 48, 52, 53syl3anbrc 1344 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ (β™―β€˜πΉ) ∈ (β„€β‰₯β€˜((β™―β€˜πΉ) βˆ’ 1)))
55 fzoss2 13660 . . . . . . . . . . . . . 14 ((β™―β€˜πΉ) ∈ (β„€β‰₯β€˜((β™―β€˜πΉ) βˆ’ 1)) β†’ (0..^((β™―β€˜πΉ) βˆ’ 1)) βŠ† (0..^(β™―β€˜πΉ)))
5654, 55syl 17 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ (0..^((β™―β€˜πΉ) βˆ’ 1)) βŠ† (0..^(β™―β€˜πΉ)))
57 elfzo1elm1fzo0 13733 . . . . . . . . . . . . 13 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ (𝑖 βˆ’ 1) ∈ (0..^((β™―β€˜πΉ) βˆ’ 1)))
5856, 57sseldd 3984 . . . . . . . . . . . 12 (𝑖 ∈ (1..^(β™―β€˜πΉ)) β†’ (𝑖 βˆ’ 1) ∈ (0..^(β™―β€˜πΉ)))
59 ccatval1 14527 . . . . . . . . . . . 12 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ (𝑖 βˆ’ 1) ∈ (0..^(β™―β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1)) = (πΉβ€˜(𝑖 βˆ’ 1)))
6058, 59syl3an3 1166 . . . . . . . . . . 11 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 𝑖 ∈ (1..^(β™―β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1)) = (πΉβ€˜(𝑖 βˆ’ 1)))
6160fveq2d 6896 . . . . . . . . . 10 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 𝑖 ∈ (1..^(β™―β€˜πΉ))) β†’ (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) = (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1))))
6261rneqd 5938 . . . . . . . . 9 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 𝑖 ∈ (1..^(β™―β€˜πΉ))) β†’ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) = ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1))))
6347, 62eleq12d 2828 . . . . . . . 8 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 𝑖 ∈ (1..^(β™―β€˜πΉ))) β†’ (((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ (πΉβ€˜π‘–) ∈ ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1)))))
64633expa 1119 . . . . . . 7 (((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š) ∧ 𝑖 ∈ (1..^(β™―β€˜πΉ))) β†’ (((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ (πΉβ€˜π‘–) ∈ ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1)))))
6564ralbidva 3176 . . . . . 6 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š) β†’ (βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))(πΉβ€˜π‘–) ∈ ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1)))))
669, 20, 65syl2an2r 684 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))(πΉβ€˜π‘–) ∈ ran (π‘‡β€˜(πΉβ€˜(𝑖 βˆ’ 1)))))
6743, 66mpbird 257 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))))
68 lencl 14483 . . . . . . . . . . . 12 (𝐹 ∈ Word π‘Š β†’ (β™―β€˜πΉ) ∈ β„•0)
699, 68syl 17 . . . . . . . . . . 11 (𝐹 ∈ dom 𝑆 β†’ (β™―β€˜πΉ) ∈ β„•0)
7069nn0cnd 12534 . . . . . . . . . 10 (𝐹 ∈ dom 𝑆 β†’ (β™―β€˜πΉ) ∈ β„‚)
7170addlidd 11415 . . . . . . . . 9 (𝐹 ∈ dom 𝑆 β†’ (0 + (β™―β€˜πΉ)) = (β™―β€˜πΉ))
7271fveq2d 6896 . . . . . . . 8 (𝐹 ∈ dom 𝑆 β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(0 + (β™―β€˜πΉ))) = ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(β™―β€˜πΉ)))
7372adantr 482 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(0 + (β™―β€˜πΉ))) = ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(β™―β€˜πΉ)))
74 s1len 14556 . . . . . . . . . . 11 (β™―β€˜βŸ¨β€œπ΄β€βŸ©) = 1
75 1nn 12223 . . . . . . . . . . 11 1 ∈ β„•
7674, 75eqeltri 2830 . . . . . . . . . 10 (β™―β€˜βŸ¨β€œπ΄β€βŸ©) ∈ β„•
77 lbfzo0 13672 . . . . . . . . . 10 (0 ∈ (0..^(β™―β€˜βŸ¨β€œπ΄β€βŸ©)) ↔ (β™―β€˜βŸ¨β€œπ΄β€βŸ©) ∈ β„•)
7876, 77mpbir 230 . . . . . . . . 9 0 ∈ (0..^(β™―β€˜βŸ¨β€œπ΄β€βŸ©))
7978a1i 11 . . . . . . . 8 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ 0 ∈ (0..^(β™―β€˜βŸ¨β€œπ΄β€βŸ©)))
80 ccatval3 14529 . . . . . . . 8 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ 0 ∈ (0..^(β™―β€˜βŸ¨β€œπ΄β€βŸ©))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(0 + (β™―β€˜πΉ))) = (βŸ¨β€œπ΄β€βŸ©β€˜0))
8128, 20, 79, 80syl3anc 1372 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(0 + (β™―β€˜πΉ))) = (βŸ¨β€œπ΄β€βŸ©β€˜0))
8273, 81eqtr3d 2775 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(β™―β€˜πΉ)) = (βŸ¨β€œπ΄β€βŸ©β€˜0))
83 simpr 486 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ)))
84 s1fv 14560 . . . . . . . 8 (𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ)) β†’ (βŸ¨β€œπ΄β€βŸ©β€˜0) = 𝐴)
8584adantl 483 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (βŸ¨β€œπ΄β€βŸ©β€˜0) = 𝐴)
86 fzo0end 13724 . . . . . . . . . . . . 13 ((β™―β€˜πΉ) ∈ β„• β†’ ((β™―β€˜πΉ) βˆ’ 1) ∈ (0..^(β™―β€˜πΉ)))
8733, 86syl 17 . . . . . . . . . . . 12 (𝐹 ∈ dom 𝑆 β†’ ((β™―β€˜πΉ) βˆ’ 1) ∈ (0..^(β™―β€˜πΉ)))
8887adantr 482 . . . . . . . . . . 11 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((β™―β€˜πΉ) βˆ’ 1) ∈ (0..^(β™―β€˜πΉ)))
89 ccatval1 14527 . . . . . . . . . . 11 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š ∧ ((β™―β€˜πΉ) βˆ’ 1) ∈ (0..^(β™―β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1)) = (πΉβ€˜((β™―β€˜πΉ) βˆ’ 1)))
9028, 20, 88, 89syl3anc 1372 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1)) = (πΉβ€˜((β™―β€˜πΉ) βˆ’ 1)))
911, 2, 3, 4, 5, 6efgsval 19599 . . . . . . . . . . 11 (𝐹 ∈ dom 𝑆 β†’ (π‘†β€˜πΉ) = (πΉβ€˜((β™―β€˜πΉ) βˆ’ 1)))
9291adantr 482 . . . . . . . . . 10 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (π‘†β€˜πΉ) = (πΉβ€˜((β™―β€˜πΉ) βˆ’ 1)))
9390, 92eqtr4d 2776 . . . . . . . . 9 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1)) = (π‘†β€˜πΉ))
9493fveq2d 6896 . . . . . . . 8 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1))) = (π‘‡β€˜(π‘†β€˜πΉ)))
9594rneqd 5938 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1))) = ran (π‘‡β€˜(π‘†β€˜πΉ)))
9683, 85, 953eltr4d 2849 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (βŸ¨β€œπ΄β€βŸ©β€˜0) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1))))
9782, 96eqeltrd 2834 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(β™―β€˜πΉ)) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1))))
98 fvex 6905 . . . . . 6 (β™―β€˜πΉ) ∈ V
99 fveq2 6892 . . . . . . 7 (𝑖 = (β™―β€˜πΉ) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) = ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(β™―β€˜πΉ)))
100 fvoveq1 7432 . . . . . . . . 9 (𝑖 = (β™―β€˜πΉ) β†’ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1)) = ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1)))
101100fveq2d 6896 . . . . . . . 8 (𝑖 = (β™―β€˜πΉ) β†’ (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) = (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1))))
102101rneqd 5938 . . . . . . 7 (𝑖 = (β™―β€˜πΉ) β†’ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) = ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1))))
10399, 102eleq12d 2828 . . . . . 6 (𝑖 = (β™―β€˜πΉ) β†’ (((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(β™―β€˜πΉ)) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1)))))
10498, 103ralsn 4686 . . . . 5 (βˆ€π‘– ∈ {(β™―β€˜πΉ)} ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(β™―β€˜πΉ)) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜((β™―β€˜πΉ) βˆ’ 1))))
10597, 104sylibr 233 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ βˆ€π‘– ∈ {(β™―β€˜πΉ)} ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))))
106 ralunb 4192 . . . 4 (βˆ€π‘– ∈ ((1..^(β™―β€˜πΉ)) βˆͺ {(β™―β€˜πΉ)})((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ (βˆ€π‘– ∈ (1..^(β™―β€˜πΉ))((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ∧ βˆ€π‘– ∈ {(β™―β€˜πΉ)} ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1)))))
10767, 105, 106sylanbrc 584 . . 3 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ βˆ€π‘– ∈ ((1..^(β™―β€˜πΉ)) βˆͺ {(β™―β€˜πΉ)})((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))))
108 ccatlen 14525 . . . . . . . 8 ((𝐹 ∈ Word π‘Š ∧ βŸ¨β€œπ΄β€βŸ© ∈ Word π‘Š) β†’ (β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©)) = ((β™―β€˜πΉ) + (β™―β€˜βŸ¨β€œπ΄β€βŸ©)))
1099, 20, 108syl2an2r 684 . . . . . . 7 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©)) = ((β™―β€˜πΉ) + (β™―β€˜βŸ¨β€œπ΄β€βŸ©)))
11074oveq2i 7420 . . . . . . 7 ((β™―β€˜πΉ) + (β™―β€˜βŸ¨β€œπ΄β€βŸ©)) = ((β™―β€˜πΉ) + 1)
111109, 110eqtrdi 2789 . . . . . 6 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©)) = ((β™―β€˜πΉ) + 1))
112111oveq2d 7425 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (1..^(β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©))) = (1..^((β™―β€˜πΉ) + 1)))
113 nnuz 12865 . . . . . . . 8 β„• = (β„€β‰₯β€˜1)
11433, 113eleqtrdi 2844 . . . . . . 7 (𝐹 ∈ dom 𝑆 β†’ (β™―β€˜πΉ) ∈ (β„€β‰₯β€˜1))
115 fzosplitsn 13740 . . . . . . 7 ((β™―β€˜πΉ) ∈ (β„€β‰₯β€˜1) β†’ (1..^((β™―β€˜πΉ) + 1)) = ((1..^(β™―β€˜πΉ)) βˆͺ {(β™―β€˜πΉ)}))
116114, 115syl 17 . . . . . 6 (𝐹 ∈ dom 𝑆 β†’ (1..^((β™―β€˜πΉ) + 1)) = ((1..^(β™―β€˜πΉ)) βˆͺ {(β™―β€˜πΉ)}))
117116adantr 482 . . . . 5 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (1..^((β™―β€˜πΉ) + 1)) = ((1..^(β™―β€˜πΉ)) βˆͺ {(β™―β€˜πΉ)}))
118112, 117eqtrd 2773 . . . 4 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (1..^(β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©))) = ((1..^(β™―β€˜πΉ)) βˆͺ {(β™―β€˜πΉ)}))
119118raleqdv 3326 . . 3 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (βˆ€π‘– ∈ (1..^(β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©)))((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))) ↔ βˆ€π‘– ∈ ((1..^(β™―β€˜πΉ)) βˆͺ {(β™―β€˜πΉ)})((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1)))))
120107, 119mpbird 257 . 2 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ βˆ€π‘– ∈ (1..^(β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©)))((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1))))
1211, 2, 3, 4, 5, 6efgsdm 19598 . 2 ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ dom 𝑆 ↔ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ (Word π‘Š βˆ– {βˆ…}) ∧ ((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜(𝐹 ++ βŸ¨β€œπ΄β€βŸ©)))((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜π‘–) ∈ ran (π‘‡β€˜((𝐹 ++ βŸ¨β€œπ΄β€βŸ©)β€˜(𝑖 βˆ’ 1)))))
12227, 41, 120, 121syl3anbrc 1344 1 ((𝐹 ∈ dom 𝑆 ∧ 𝐴 ∈ ran (π‘‡β€˜(π‘†β€˜πΉ))) β†’ (𝐹 ++ βŸ¨β€œπ΄β€βŸ©) ∈ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  {crab 3433   βˆ– cdif 3946   βˆͺ cun 3947   βŠ† wss 3949  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635  βŸ¨cotp 4637  βˆͺ ciun 4998   class class class wbr 5149   ↦ cmpt 5232   I cid 5574   Γ— cxp 5675  dom cdm 5677  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  1oc1o 8459  2oc2o 8460  0cc0 11110  1c1 11111   + caddc 11113   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  β„•0cn0 12472  β„€cz 12558  β„€β‰₯cuz 12822  ...cfz 13484  ..^cfzo 13627  β™―chash 14290  Word cword 14464   ++ cconcat 14520  βŸ¨β€œcs1 14545   splice csplice 14699  βŸ¨β€œcs2 14792   ~FG cefg 19574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-s1 14546  df-substr 14591  df-pfx 14621  df-splice 14700  df-s2 14799
This theorem is referenced by:  efgsfo  19607  efgredlemd  19612  efgrelexlemb  19618
  Copyright terms: Public domain W3C validator