MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2 Structured version   Visualization version   GIF version

Theorem clwwlknonex2 30011
Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtx‘𝐺)
clwwlknonex2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonex2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))

Proof of Theorem clwwlknonex2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uz3m2nn 12829 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
21nnne0d 12212 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
323ad2ant3 1135 . . . . . 6 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ≠ 0)
4 clwwlknonex2.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
5 clwwlknonex2.e . . . . . . 7 𝐸 = (Edg‘𝐺)
64, 5clwwlknonel 29997 . . . . . 6 ((𝑁 − 2) ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
73, 6syl 17 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
8 simpr11 1258 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → 𝑊 ∈ Word 𝑉)
98adantr 480 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)
10 simpll1 1213 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑋𝑉)
11 simpll2 1214 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑌𝑉)
12 ccatw2s1cl 14565 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
139, 10, 11, 12syl3anc 1373 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
144, 5clwwlknonex2lem2 30010 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
15 simp11 1204 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 𝑊 ∈ Word 𝑉)
1615ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)
17 ccatw2s1len 14566 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
1816, 17syl 17 . . . . . . . . . . . 12 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
1918oveq1d 7384 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1) = (((♯‘𝑊) + 2) − 1))
2019oveq2d 7385 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)) = (0..^(((♯‘𝑊) + 2) − 1)))
21 simp3 1138 . . . . . . . . . . . . 13 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘3))
22 simp2 1137 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (♯‘𝑊) = (𝑁 − 2))
2321, 22anim12i 613 . . . . . . . . . . . 12 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)))
2423adantr 480 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)))
25 clwwlknonex2lem1 30009 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2624, 25syl 17 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2720, 26eqtrd 2764 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2814, 27raleqtrrdv 3300 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
29 ccatws1cl 14557 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
30 lswccats1 14575 . . . . . . . . . . . 12 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉𝑌𝑉) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
3129, 30stoic3 1776 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
3216, 10, 11, 31syl3anc 1373 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
331nngt0d 12211 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘3) → 0 < (𝑁 − 2))
34 breq2 5106 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 − 2) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 2)))
3533, 34imbitrrid 246 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = (𝑁 − 2) → (𝑁 ∈ (ℤ‘3) → 0 < (♯‘𝑊)))
36353ad2ant2 1134 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → 0 < (♯‘𝑊)))
3736com12 32 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 0 < (♯‘𝑊)))
38373ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 0 < (♯‘𝑊)))
3938imp 406 . . . . . . . . . . . 12 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → 0 < (♯‘𝑊))
4039adantr 480 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 0 < (♯‘𝑊))
41 ccat2s1fst 14580 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
4216, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
4332, 42preq12d 4701 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} = {𝑌, (𝑊‘0)})
44 prcom 4692 . . . . . . . . . . . . 13 {𝑋, 𝑌} = {𝑌, 𝑋}
4544eleq1i 2819 . . . . . . . . . . . 12 ({𝑋, 𝑌} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸)
4645biimpi 216 . . . . . . . . . . 11 ({𝑋, 𝑌} ∈ 𝐸 → {𝑌, 𝑋} ∈ 𝐸)
4746adantl 481 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑌, 𝑋} ∈ 𝐸)
48 preq2 4694 . . . . . . . . . . . . 13 ((𝑊‘0) = 𝑋 → {𝑌, (𝑊‘0)} = {𝑌, 𝑋})
4948eleq1d 2813 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
50493ad2ant3 1135 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
5150ad2antlr 727 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
5247, 51mpbird 257 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑌, (𝑊‘0)} ∈ 𝐸)
5343, 52eqeltrd 2828 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸)
5413, 28, 533jca 1128 . . . . . . 7 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸))
55173ad2ant1 1133 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
56553ad2ant1 1133 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
5756ad2antlr 727 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
58 oveq1 7376 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) + 2) = ((𝑁 − 2) + 2))
59 eluzelcn 12781 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
60 2cn 12237 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
61 npcan 11406 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
6259, 60, 61sylancl 586 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
6358, 62sylan9eq 2784 . . . . . . . . . . . . . 14 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) + 2) = 𝑁)
6463ex 412 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 − 2) → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) + 2) = 𝑁))
65643ad2ant2 1134 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) + 2) = 𝑁))
6665com12 32 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((♯‘𝑊) + 2) = 𝑁))
67663ad2ant3 1135 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((♯‘𝑊) + 2) = 𝑁))
6867imp 406 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → ((♯‘𝑊) + 2) = 𝑁)
6968adantr 480 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘𝑊) + 2) = 𝑁)
7057, 69eqtrd 2764 . . . . . . 7 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)
7154, 70jca 511 . . . . . 6 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))
7271exp31 419 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
737, 72sylbid 240 . . . 4 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ({𝑋, 𝑌} ∈ 𝐸 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
7473com23 86 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
75743imp 1110 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))
76 eluz3nn 12824 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
774, 5isclwwlknx 29938 . . . . 5 (𝑁 ∈ ℕ → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
7876, 77syl 17 . . . 4 (𝑁 ∈ (ℤ‘3) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
79783ad2ant3 1135 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
80793ad2ant1 1133 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
8175, 80mpbird 257 1 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cun 3909  {cpr 4587   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cmin 11381  cn 12162  2c2 12217  3c3 12218  cuz 12769  ..^cfzo 13591  chash 14271  Word cword 14454  lastSclsw 14503   ++ cconcat 14511  ⟨“cs1 14536  Vtxcvtx 28899  Edgcedg 28950   ClWWalksN cclwwlkn 29926  ClWWalksNOncclwwlknon 29989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-clwwlk 29884  df-clwwlkn 29927  df-clwwlknon 29990
This theorem is referenced by:  clwwlknonex2e  30012  numclwwlk1lem2foa  30256
  Copyright terms: Public domain W3C validator