MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2 Structured version   Visualization version   GIF version

Theorem clwwlknonex2 30138
Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtx‘𝐺)
clwwlknonex2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonex2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))

Proof of Theorem clwwlknonex2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uz3m2nn 12931 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
21nnne0d 12314 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
323ad2ant3 1134 . . . . . 6 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ≠ 0)
4 clwwlknonex2.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
5 clwwlknonex2.e . . . . . . 7 𝐸 = (Edg‘𝐺)
64, 5clwwlknonel 30124 . . . . . 6 ((𝑁 − 2) ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
73, 6syl 17 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
8 simpr11 1256 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → 𝑊 ∈ Word 𝑉)
98adantr 480 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)
10 simpll1 1211 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑋𝑉)
11 simpll2 1212 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑌𝑉)
12 ccatw2s1cl 14659 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
139, 10, 11, 12syl3anc 1370 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
144, 5clwwlknonex2lem2 30137 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
15 simp11 1202 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 𝑊 ∈ Word 𝑉)
1615ad2antlr 727 . . . . . . . . . . . . 13 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)
17 ccatw2s1len 14660 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
1816, 17syl 17 . . . . . . . . . . . 12 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
1918oveq1d 7446 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1) = (((♯‘𝑊) + 2) − 1))
2019oveq2d 7447 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)) = (0..^(((♯‘𝑊) + 2) − 1)))
21 simp3 1137 . . . . . . . . . . . . 13 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘3))
22 simp2 1136 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (♯‘𝑊) = (𝑁 − 2))
2321, 22anim12i 613 . . . . . . . . . . . 12 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)))
2423adantr 480 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)))
25 clwwlknonex2lem1 30136 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2624, 25syl 17 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2720, 26eqtrd 2775 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2814, 27raleqtrrdv 3328 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
29 ccatws1cl 14651 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
30 lswccats1 14669 . . . . . . . . . . . 12 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉𝑌𝑉) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
3129, 30stoic3 1773 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
3216, 10, 11, 31syl3anc 1370 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
331nngt0d 12313 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘3) → 0 < (𝑁 − 2))
34 breq2 5152 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 − 2) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 2)))
3533, 34imbitrrid 246 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = (𝑁 − 2) → (𝑁 ∈ (ℤ‘3) → 0 < (♯‘𝑊)))
36353ad2ant2 1133 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → 0 < (♯‘𝑊)))
3736com12 32 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 0 < (♯‘𝑊)))
38373ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 0 < (♯‘𝑊)))
3938imp 406 . . . . . . . . . . . 12 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → 0 < (♯‘𝑊))
4039adantr 480 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 0 < (♯‘𝑊))
41 ccat2s1fst 14674 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
4216, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
4332, 42preq12d 4746 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} = {𝑌, (𝑊‘0)})
44 prcom 4737 . . . . . . . . . . . . 13 {𝑋, 𝑌} = {𝑌, 𝑋}
4544eleq1i 2830 . . . . . . . . . . . 12 ({𝑋, 𝑌} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸)
4645biimpi 216 . . . . . . . . . . 11 ({𝑋, 𝑌} ∈ 𝐸 → {𝑌, 𝑋} ∈ 𝐸)
4746adantl 481 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑌, 𝑋} ∈ 𝐸)
48 preq2 4739 . . . . . . . . . . . . 13 ((𝑊‘0) = 𝑋 → {𝑌, (𝑊‘0)} = {𝑌, 𝑋})
4948eleq1d 2824 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
50493ad2ant3 1134 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
5150ad2antlr 727 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
5247, 51mpbird 257 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑌, (𝑊‘0)} ∈ 𝐸)
5343, 52eqeltrd 2839 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸)
5413, 28, 533jca 1127 . . . . . . 7 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸))
55173ad2ant1 1132 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
56553ad2ant1 1132 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
5756ad2antlr 727 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
58 oveq1 7438 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) + 2) = ((𝑁 − 2) + 2))
59 eluzelcn 12888 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
60 2cn 12339 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
61 npcan 11515 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
6259, 60, 61sylancl 586 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
6358, 62sylan9eq 2795 . . . . . . . . . . . . . 14 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) + 2) = 𝑁)
6463ex 412 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 − 2) → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) + 2) = 𝑁))
65643ad2ant2 1133 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) + 2) = 𝑁))
6665com12 32 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((♯‘𝑊) + 2) = 𝑁))
67663ad2ant3 1134 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((♯‘𝑊) + 2) = 𝑁))
6867imp 406 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → ((♯‘𝑊) + 2) = 𝑁)
6968adantr 480 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘𝑊) + 2) = 𝑁)
7057, 69eqtrd 2775 . . . . . . 7 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)
7154, 70jca 511 . . . . . 6 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))
7271exp31 419 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
737, 72sylbid 240 . . . 4 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ({𝑋, 𝑌} ∈ 𝐸 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
7473com23 86 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
75743imp 1110 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))
76 eluzge3nn 12930 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
774, 5isclwwlknx 30065 . . . . 5 (𝑁 ∈ ℕ → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
7876, 77syl 17 . . . 4 (𝑁 ∈ (ℤ‘3) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
79783ad2ant3 1134 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
80793ad2ant1 1132 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
8175, 80mpbird 257 1 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  cun 3961  {cpr 4633   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cmin 11490  cn 12264  2c2 12319  3c3 12320  cuz 12876  ..^cfzo 13691  chash 14366  Word cword 14549  lastSclsw 14597   ++ cconcat 14605  ⟨“cs1 14630  Vtxcvtx 29028  Edgcedg 29079   ClWWalksN cclwwlkn 30053  ClWWalksNOncclwwlknon 30116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-clwwlk 30011  df-clwwlkn 30054  df-clwwlknon 30117
This theorem is referenced by:  clwwlknonex2e  30139  numclwwlk1lem2foa  30383
  Copyright terms: Public domain W3C validator