MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2 Structured version   Visualization version   GIF version

Theorem clwwlknonex2 29351
Description: Extending a closed walk π‘Š on vertex 𝑋 by an additional edge (forth and back) results in a closed walk. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtxβ€˜πΊ)
clwwlknonex2.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
clwwlknonex2 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ {𝑋, π‘Œ} ∈ 𝐸 ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺))

Proof of Theorem clwwlknonex2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uz3m2nn 12871 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) ∈ β„•)
21nnne0d 12258 . . . . . . 7 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (𝑁 βˆ’ 2) β‰  0)
323ad2ant3 1135 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (𝑁 βˆ’ 2) β‰  0)
4 clwwlknonex2.v . . . . . . 7 𝑉 = (Vtxβ€˜πΊ)
5 clwwlknonex2.e . . . . . . 7 𝐸 = (Edgβ€˜πΊ)
64, 5clwwlknonel 29337 . . . . . 6 ((𝑁 βˆ’ 2) β‰  0 β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
73, 6syl 17 . . . . 5 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) ↔ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)))
8 simpr11 1257 . . . . . . . . . 10 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) β†’ π‘Š ∈ Word 𝑉)
98adantr 481 . . . . . . . . 9 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ π‘Š ∈ Word 𝑉)
10 simpll1 1212 . . . . . . . . 9 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ 𝑋 ∈ 𝑉)
11 simpll2 1213 . . . . . . . . 9 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ π‘Œ ∈ 𝑉)
12 ccatw2s1cl 14570 . . . . . . . . 9 ((π‘Š ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉)
139, 10, 11, 12syl3anc 1371 . . . . . . . 8 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉)
144, 5clwwlknonex2lem2 29350 . . . . . . . . 9 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ βˆ€π‘– ∈ ((0..^((β™―β€˜π‘Š) βˆ’ 1)) βˆͺ {((β™―β€˜π‘Š) βˆ’ 1), (β™―β€˜π‘Š)}){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸)
15 simp11 1203 . . . . . . . . . . . . . . 15 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ π‘Š ∈ Word 𝑉)
1615ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ π‘Š ∈ Word 𝑉)
17 ccatw2s1len 14571 . . . . . . . . . . . . . 14 (π‘Š ∈ Word 𝑉 β†’ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = ((β™―β€˜π‘Š) + 2))
1816, 17syl 17 . . . . . . . . . . . . 13 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = ((β™―β€˜π‘Š) + 2))
1918oveq1d 7420 . . . . . . . . . . . 12 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ ((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1) = (((β™―β€˜π‘Š) + 2) βˆ’ 1))
2019oveq2d 7421 . . . . . . . . . . 11 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)) = (0..^(((β™―β€˜π‘Š) + 2) βˆ’ 1)))
21 simp3 1138 . . . . . . . . . . . . . 14 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ 𝑁 ∈ (β„€β‰₯β€˜3))
22 simp2 1137 . . . . . . . . . . . . . 14 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2))
2321, 22anim12i 613 . . . . . . . . . . . . 13 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)))
2423adantr 481 . . . . . . . . . . . 12 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)))
25 clwwlknonex2lem1 29349 . . . . . . . . . . . 12 ((𝑁 ∈ (β„€β‰₯β€˜3) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2)) β†’ (0..^(((β™―β€˜π‘Š) + 2) βˆ’ 1)) = ((0..^((β™―β€˜π‘Š) βˆ’ 1)) βˆͺ {((β™―β€˜π‘Š) βˆ’ 1), (β™―β€˜π‘Š)}))
2624, 25syl 17 . . . . . . . . . . 11 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (0..^(((β™―β€˜π‘Š) + 2) βˆ’ 1)) = ((0..^((β™―β€˜π‘Š) βˆ’ 1)) βˆͺ {((β™―β€˜π‘Š) βˆ’ 1), (β™―β€˜π‘Š)}))
2720, 26eqtrd 2772 . . . . . . . . . 10 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)) = ((0..^((β™―β€˜π‘Š) βˆ’ 1)) βˆͺ {((β™―β€˜π‘Š) βˆ’ 1), (β™―β€˜π‘Š)}))
2827raleqdv 3325 . . . . . . . . 9 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ↔ βˆ€π‘– ∈ ((0..^((β™―β€˜π‘Š) βˆ’ 1)) βˆͺ {((β™―β€˜π‘Š) βˆ’ 1), (β™―β€˜π‘Š)}){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸))
2914, 28mpbird 256 . . . . . . . 8 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸)
30 ccatws1cl 14562 . . . . . . . . . . . 12 ((π‘Š ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉) β†’ (π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ∈ Word 𝑉)
31 lswccats1 14580 . . . . . . . . . . . 12 (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ∈ Word 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = π‘Œ)
3230, 31stoic3 1778 . . . . . . . . . . 11 ((π‘Š ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = π‘Œ)
3316, 10, 11, 32syl3anc 1371 . . . . . . . . . 10 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = π‘Œ)
341nngt0d 12257 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 0 < (𝑁 βˆ’ 2))
35 breq2 5151 . . . . . . . . . . . . . . . . 17 ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ (0 < (β™―β€˜π‘Š) ↔ 0 < (𝑁 βˆ’ 2)))
3634, 35imbitrrid 245 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 0 < (β™―β€˜π‘Š)))
37363ad2ant2 1134 . . . . . . . . . . . . . . 15 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 0 < (β™―β€˜π‘Š)))
3837com12 32 . . . . . . . . . . . . . 14 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ 0 < (β™―β€˜π‘Š)))
39383ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ 0 < (β™―β€˜π‘Š)))
4039imp 407 . . . . . . . . . . . 12 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) β†’ 0 < (β™―β€˜π‘Š))
4140adantr 481 . . . . . . . . . . 11 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ 0 < (β™―β€˜π‘Š))
42 ccat2s1fst 14585 . . . . . . . . . . 11 ((π‘Š ∈ Word 𝑉 ∧ 0 < (β™―β€˜π‘Š)) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0) = (π‘Šβ€˜0))
4316, 41, 42syl2anc 584 . . . . . . . . . 10 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0) = (π‘Šβ€˜0))
4433, 43preq12d 4744 . . . . . . . . 9 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} = {π‘Œ, (π‘Šβ€˜0)})
45 prcom 4735 . . . . . . . . . . . . 13 {𝑋, π‘Œ} = {π‘Œ, 𝑋}
4645eleq1i 2824 . . . . . . . . . . . 12 ({𝑋, π‘Œ} ∈ 𝐸 ↔ {π‘Œ, 𝑋} ∈ 𝐸)
4746biimpi 215 . . . . . . . . . . 11 ({𝑋, π‘Œ} ∈ 𝐸 β†’ {π‘Œ, 𝑋} ∈ 𝐸)
4847adantl 482 . . . . . . . . . 10 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ {π‘Œ, 𝑋} ∈ 𝐸)
49 preq2 4737 . . . . . . . . . . . . 13 ((π‘Šβ€˜0) = 𝑋 β†’ {π‘Œ, (π‘Šβ€˜0)} = {π‘Œ, 𝑋})
5049eleq1d 2818 . . . . . . . . . . . 12 ((π‘Šβ€˜0) = 𝑋 β†’ ({π‘Œ, (π‘Šβ€˜0)} ∈ 𝐸 ↔ {π‘Œ, 𝑋} ∈ 𝐸))
51503ad2ant3 1135 . . . . . . . . . . 11 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ ({π‘Œ, (π‘Šβ€˜0)} ∈ 𝐸 ↔ {π‘Œ, 𝑋} ∈ 𝐸))
5251ad2antlr 725 . . . . . . . . . 10 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ ({π‘Œ, (π‘Šβ€˜0)} ∈ 𝐸 ↔ {π‘Œ, 𝑋} ∈ 𝐸))
5348, 52mpbird 256 . . . . . . . . 9 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ {π‘Œ, (π‘Šβ€˜0)} ∈ 𝐸)
5444, 53eqeltrd 2833 . . . . . . . 8 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸)
5513, 29, 543jca 1128 . . . . . . 7 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸))
56173ad2ant1 1133 . . . . . . . . . 10 ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) β†’ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = ((β™―β€˜π‘Š) + 2))
57563ad2ant1 1133 . . . . . . . . 9 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = ((β™―β€˜π‘Š) + 2))
5857ad2antlr 725 . . . . . . . 8 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = ((β™―β€˜π‘Š) + 2))
59 oveq1 7412 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ ((β™―β€˜π‘Š) + 2) = ((𝑁 βˆ’ 2) + 2))
60 eluzelcn 12830 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„‚)
61 2cn 12283 . . . . . . . . . . . . . . . 16 2 ∈ β„‚
62 npcan 11465 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ β„‚ ∧ 2 ∈ β„‚) β†’ ((𝑁 βˆ’ 2) + 2) = 𝑁)
6360, 61, 62sylancl 586 . . . . . . . . . . . . . . 15 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ ((𝑁 βˆ’ 2) + 2) = 𝑁)
6459, 63sylan9eq 2792 . . . . . . . . . . . . . 14 (((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ((β™―β€˜π‘Š) + 2) = 𝑁)
6564ex 413 . . . . . . . . . . . . 13 ((β™―β€˜π‘Š) = (𝑁 βˆ’ 2) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ ((β™―β€˜π‘Š) + 2) = 𝑁))
66653ad2ant2 1134 . . . . . . . . . . . 12 (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ (𝑁 ∈ (β„€β‰₯β€˜3) β†’ ((β™―β€˜π‘Š) + 2) = 𝑁))
6766com12 32 . . . . . . . . . . 11 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ ((β™―β€˜π‘Š) + 2) = 𝑁))
68673ad2ant3 1135 . . . . . . . . . 10 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ ((β™―β€˜π‘Š) + 2) = 𝑁))
6968imp 407 . . . . . . . . 9 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) β†’ ((β™―β€˜π‘Š) + 2) = 𝑁)
7069adantr 481 . . . . . . . 8 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ ((β™―β€˜π‘Š) + 2) = 𝑁)
7158, 70eqtrd 2772 . . . . . . 7 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁)
7255, 71jca 512 . . . . . 6 ((((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ ((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋)) ∧ {𝑋, π‘Œ} ∈ 𝐸) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁))
7372exp31 420 . . . . 5 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)){(π‘Šβ€˜π‘–), (π‘Šβ€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜π‘Š), (π‘Šβ€˜0)} ∈ 𝐸) ∧ (β™―β€˜π‘Š) = (𝑁 βˆ’ 2) ∧ (π‘Šβ€˜0) = 𝑋) β†’ ({𝑋, π‘Œ} ∈ 𝐸 β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁))))
747, 73sylbid 239 . . . 4 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) β†’ ({𝑋, π‘Œ} ∈ 𝐸 β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁))))
7574com23 86 . . 3 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ ({𝑋, π‘Œ} ∈ 𝐸 β†’ (π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2)) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁))))
76753imp 1111 . 2 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ {𝑋, π‘Œ} ∈ 𝐸 ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) β†’ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁))
77 eluzge3nn 12870 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ 𝑁 ∈ β„•)
784, 5isclwwlknx 29278 . . . . 5 (𝑁 ∈ β„• β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁)))
7977, 78syl 17 . . . 4 (𝑁 ∈ (β„€β‰₯β€˜3) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁)))
80793ad2ant3 1135 . . 3 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁)))
81803ad2ant1 1133 . 2 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ {𝑋, π‘Œ} ∈ 𝐸 ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) β†’ (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) βˆ’ 1)){(((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜π‘–), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜(𝑖 + 1))} ∈ 𝐸 ∧ {(lastSβ€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)), (((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)β€˜0)} ∈ 𝐸) ∧ (β™―β€˜((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©)) = 𝑁)))
8276, 81mpbird 256 1 (((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜3)) ∧ {𝑋, π‘Œ} ∈ 𝐸 ∧ π‘Š ∈ (𝑋(ClWWalksNOnβ€˜πΊ)(𝑁 βˆ’ 2))) β†’ ((π‘Š ++ βŸ¨β€œπ‘‹β€βŸ©) ++ βŸ¨β€œπ‘Œβ€βŸ©) ∈ (𝑁 ClWWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βˆͺ cun 3945  {cpr 4629   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244   βˆ’ cmin 11440  β„•cn 12208  2c2 12263  3c3 12264  β„€β‰₯cuz 12818  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   ++ cconcat 14516  βŸ¨β€œcs1 14541  Vtxcvtx 28245  Edgcedg 28296   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  clwwlknonex2e  29352  numclwwlk1lem2foa  29596
  Copyright terms: Public domain W3C validator