Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2 Structured version   Visualization version   GIF version

Theorem clwwlknonex2 27511
 Description: Extending a closed walk 𝑊 on vertex 𝑋 by an additional edge (forth and back) results in a closed walk. (Contributed by AV, 22-Sep-2018.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 28-Mar-2022.)
Hypotheses
Ref Expression
clwwlknonex2.v 𝑉 = (Vtx‘𝐺)
clwwlknonex2.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknonex2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))

Proof of Theorem clwwlknonex2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 uz3m2nn 12037 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
21nnne0d 11425 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ≠ 0)
323ad2ant3 1126 . . . . . 6 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ≠ 0)
4 clwwlknonex2.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
5 clwwlknonex2.e . . . . . . 7 𝐸 = (Edg‘𝐺)
64, 5clwwlknonel 27497 . . . . . 6 ((𝑁 − 2) ≠ 0 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
73, 6syl 17 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)))
8 simpr11 1304 . . . . . . . . . 10 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → 𝑊 ∈ Word 𝑉)
98adantr 474 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)
10 simpll1 1226 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑋𝑉)
11 simpll2 1228 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑌𝑉)
12 ccatw2s1cl 13714 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
139, 10, 11, 12syl3anc 1439 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
144, 5clwwlknonex2lem2 27510 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
15 simp11 1217 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 𝑊 ∈ Word 𝑉)
1615ad2antlr 717 . . . . . . . . . . . . . 14 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 𝑊 ∈ Word 𝑉)
17 ccatw2s1len 13715 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
1816, 17syl 17 . . . . . . . . . . . . 13 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
1918oveq1d 6937 . . . . . . . . . . . 12 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1) = (((♯‘𝑊) + 2) − 1))
2019oveq2d 6938 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)) = (0..^(((♯‘𝑊) + 2) − 1)))
21 simp3 1129 . . . . . . . . . . . . . 14 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ (ℤ‘3))
22 simp2 1128 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (♯‘𝑊) = (𝑁 − 2))
2321, 22anim12i 606 . . . . . . . . . . . . 13 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)))
2423adantr 474 . . . . . . . . . . . 12 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)))
25 clwwlknonex2lem1 27509 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2624, 25syl 17 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2720, 26eqtrd 2814 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
2827raleqdv 3340 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸))
2914, 28mpbird 249 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸)
30 ccatws1cl 13706 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
31 lswccats1 13724 . . . . . . . . . . . 12 (((𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉𝑌𝑉) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
3230, 31stoic3 1820 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
3316, 10, 11, 32syl3anc 1439 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑌)
341nngt0d 11424 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘3) → 0 < (𝑁 − 2))
35 breq2 4890 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) = (𝑁 − 2) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 2)))
3634, 35syl5ibr 238 . . . . . . . . . . . . . . . 16 ((♯‘𝑊) = (𝑁 − 2) → (𝑁 ∈ (ℤ‘3) → 0 < (♯‘𝑊)))
37363ad2ant2 1125 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → 0 < (♯‘𝑊)))
3837com12 32 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 0 < (♯‘𝑊)))
39383ad2ant3 1126 . . . . . . . . . . . . 13 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → 0 < (♯‘𝑊)))
4039imp 397 . . . . . . . . . . . 12 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → 0 < (♯‘𝑊))
4140adantr 474 . . . . . . . . . . 11 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → 0 < (♯‘𝑊))
42 ccat2s1fst 13729 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
4316, 41, 10, 11, 42syl22anc 829 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0) = (𝑊‘0))
4433, 43preq12d 4508 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} = {𝑌, (𝑊‘0)})
45 prcom 4499 . . . . . . . . . . . . 13 {𝑋, 𝑌} = {𝑌, 𝑋}
4645eleq1i 2850 . . . . . . . . . . . 12 ({𝑋, 𝑌} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸)
4746biimpi 208 . . . . . . . . . . 11 ({𝑋, 𝑌} ∈ 𝐸 → {𝑌, 𝑋} ∈ 𝐸)
4847adantl 475 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑌, 𝑋} ∈ 𝐸)
49 preq2 4501 . . . . . . . . . . . . 13 ((𝑊‘0) = 𝑋 → {𝑌, (𝑊‘0)} = {𝑌, 𝑋})
5049eleq1d 2844 . . . . . . . . . . . 12 ((𝑊‘0) = 𝑋 → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
51503ad2ant3 1126 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
5251ad2antlr 717 . . . . . . . . . 10 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ({𝑌, (𝑊‘0)} ∈ 𝐸 ↔ {𝑌, 𝑋} ∈ 𝐸))
5348, 52mpbird 249 . . . . . . . . 9 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {𝑌, (𝑊‘0)} ∈ 𝐸)
5444, 53eqeltrd 2859 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸)
5513, 29, 543jca 1119 . . . . . . 7 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸))
56173ad2ant1 1124 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
57563ad2ant1 1124 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
5857ad2antlr 717 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = ((♯‘𝑊) + 2))
59 oveq1 6929 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) + 2) = ((𝑁 − 2) + 2))
60 eluzelcn 12004 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
61 2cn 11450 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
62 npcan 10632 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
6360, 61, 62sylancl 580 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) + 2) = 𝑁)
6459, 63sylan9eq 2834 . . . . . . . . . . . . . 14 (((♯‘𝑊) = (𝑁 − 2) ∧ 𝑁 ∈ (ℤ‘3)) → ((♯‘𝑊) + 2) = 𝑁)
6564ex 403 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 − 2) → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) + 2) = 𝑁))
66653ad2ant2 1125 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → (𝑁 ∈ (ℤ‘3) → ((♯‘𝑊) + 2) = 𝑁))
6766com12 32 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((♯‘𝑊) + 2) = 𝑁))
68673ad2ant3 1126 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ((♯‘𝑊) + 2) = 𝑁))
6968imp 397 . . . . . . . . 9 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) → ((♯‘𝑊) + 2) = 𝑁)
7069adantr 474 . . . . . . . 8 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘𝑊) + 2) = 𝑁)
7158, 70eqtrd 2814 . . . . . . 7 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)
7255, 71jca 507 . . . . . 6 ((((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋)) ∧ {𝑋, 𝑌} ∈ 𝐸) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))
7372exp31 412 . . . . 5 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 − 2) ∧ (𝑊‘0) = 𝑋) → ({𝑋, 𝑌} ∈ 𝐸 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
747, 73sylbid 232 . . . 4 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ({𝑋, 𝑌} ∈ 𝐸 → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
7574com23 86 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → ({𝑋, 𝑌} ∈ 𝐸 → (𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2)) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))))
76753imp 1098 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁))
77 eluzge3nn 12036 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
784, 5isclwwlknx 27425 . . . . 5 (𝑁 ∈ ℕ → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
7977, 78syl 17 . . . 4 (𝑁 ∈ (ℤ‘3) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
80793ad2ant3 1126 . . 3 ((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
81803ad2ant1 1124 . 2 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ ((((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) − 1)){(((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘𝑖), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)), (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘0)} ∈ 𝐸) ∧ (♯‘((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)) = 𝑁)))
8276, 81mpbird 249 1 (((𝑋𝑉𝑌𝑉𝑁 ∈ (ℤ‘3)) ∧ {𝑋, 𝑌} ∈ 𝐸𝑊 ∈ (𝑋(ClWWalksNOn‘𝐺)(𝑁 − 2))) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ (𝑁 ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∀wral 3090   ∪ cun 3790  {cpr 4400   class class class wbr 4886  ‘cfv 6135  (class class class)co 6922  ℂcc 10270  0cc0 10272  1c1 10273   + caddc 10275   < clt 10411   − cmin 10606  ℕcn 11374  2c2 11430  3c3 11431  ℤ≥cuz 11992  ..^cfzo 12784  ♯chash 13435  Word cword 13599  lastSclsw 13652   ++ cconcat 13660  ⟨“cs1 13685  Vtxcvtx 26344  Edgcedg 26395   ClWWalksN cclwwlkn 27413  ClWWalksNOncclwwlknon 27489 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-lsw 13653  df-concat 13661  df-s1 13686  df-clwwlk 27362  df-clwwlkn 27414  df-clwwlknon 27490 This theorem is referenced by:  clwwlknonex2e  27512  numclwwlk1lem2foa  27769  numclwwlk1lem2foaOLD  27770
 Copyright terms: Public domain W3C validator