| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iscn 23244 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | 
| 2 | 1 | simprbda 498 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) | 
| 3 |  | eqid 2736 | . . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 4 | 3 | cncnpi 23287 | . . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 5 | 4 | ralrimiva 3145 | . . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 6 | 5 | adantl 481 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 7 |  | toponuni 22921 | . . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 8 | 7 | ad2antrr 726 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑋 = ∪ 𝐽) | 
| 9 | 6, 8 | raleqtrrdv 3329 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 10 | 2, 9 | jca 511 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) | 
| 11 |  | simprl 770 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹:𝑋⟶𝑌) | 
| 12 |  | cnvimass 6099 | . . . . . . . . . 10
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 | 
| 13 |  | fdm 6744 | . . . . . . . . . . 11
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) | 
| 14 | 13 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) | 
| 15 | 12, 14 | sseqtrid 4025 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) | 
| 16 |  | ssralv 4051 | . . . . . . . . 9
⊢ ((◡𝐹 “ 𝑦) ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) | 
| 17 | 15, 16 | syl 17 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) | 
| 18 |  | simprr 772 | . . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) | 
| 19 |  | simpllr 775 | . . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑦 ∈ 𝐾) | 
| 20 |  | ffn 6735 | . . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) | 
| 21 | 20 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 Fn 𝑋) | 
| 22 |  | simprl 770 | . . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ (◡𝐹 “ 𝑦)) | 
| 23 |  | elpreima 7077 | . . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ 𝑦))) | 
| 24 | 23 | simplbda 499 | . . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑋 ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹‘𝑥) ∈ 𝑦) | 
| 25 | 21, 22, 24 | syl2anc 584 | . . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹‘𝑥) ∈ 𝑦) | 
| 26 |  | cnpimaex 23265 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) | 
| 27 | 18, 19, 25, 26 | syl3anc 1372 | . . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) | 
| 28 |  | simpllr 775 | . . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝑋⟶𝑌) | 
| 29 | 28 | ffund 6739 | . . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → Fun 𝐹) | 
| 30 |  | simp-4l 782 | . . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 31 |  | toponss 22934 | . . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) | 
| 32 | 30, 31 | sylan 580 | . . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) | 
| 33 | 28, 13 | syl 17 | . . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 = 𝑋) | 
| 34 | 32, 33 | sseqtrrd 4020 | . . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ dom 𝐹) | 
| 35 |  | funimass3 7073 | . . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ 𝑢 ⊆ dom 𝐹) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) | 
| 36 | 29, 34, 35 | syl2anc 584 | . . . . . . . . . . . . 13
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) | 
| 37 | 36 | anbi2d 630 | . . . . . . . . . . . 12
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) | 
| 38 | 37 | rexbidva 3176 | . . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) | 
| 39 | 27, 38 | mpbid 232 | . . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) | 
| 40 | 39 | expr 456 | . . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) | 
| 41 | 40 | ralimdva 3166 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) | 
| 42 | 17, 41 | syld 47 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) | 
| 43 | 42 | impr 454 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) | 
| 44 | 43 | an32s 652 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) | 
| 45 |  | topontop 22920 | . . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 46 | 45 | ad3antrrr 730 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → 𝐽 ∈ Top) | 
| 47 |  | eltop2 22983 | . . . . . 6
⊢ (𝐽 ∈ Top → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) | 
| 48 | 46, 47 | syl 17 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) | 
| 49 | 44, 48 | mpbird 257 | . . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → (◡𝐹 “ 𝑦) ∈ 𝐽) | 
| 50 | 49 | ralrimiva 3145 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) | 
| 51 | 1 | adantr 480 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | 
| 52 | 11, 50, 51 | mpbir2and 713 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 53 | 10, 52 | impbida 800 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |