Step | Hyp | Ref
| Expression |
1 | | iscn 22384 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
2 | 1 | simprbda 499 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
3 | | eqid 2740 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
4 | 3 | cncnpi 22427 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ ∪ 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
5 | 4 | ralrimiva 3110 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
6 | 5 | adantl 482 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
7 | | toponuni 22061 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
8 | 7 | ad2antrr 723 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑋 = ∪ 𝐽) |
9 | 8 | raleqdv 3347 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ ∪ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
10 | 6, 9 | mpbird 256 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
11 | 2, 10 | jca 512 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
12 | | simprl 768 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹:𝑋⟶𝑌) |
13 | | cnvimass 5988 |
. . . . . . . . . 10
⊢ (◡𝐹 “ 𝑦) ⊆ dom 𝐹 |
14 | | fdm 6607 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
15 | 14 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) |
16 | 13, 15 | sseqtrid 3978 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (◡𝐹 “ 𝑦) ⊆ 𝑋) |
17 | | ssralv 3992 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑦) ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
19 | | simprr 770 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) |
20 | | simpllr 773 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑦 ∈ 𝐾) |
21 | | ffn 6598 |
. . . . . . . . . . . . . 14
⊢ (𝐹:𝑋⟶𝑌 → 𝐹 Fn 𝑋) |
22 | 21 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 Fn 𝑋) |
23 | | simprl 768 |
. . . . . . . . . . . . 13
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ (◡𝐹 “ 𝑦)) |
24 | | elpreima 6932 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ 𝑦) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ 𝑦))) |
25 | 24 | simplbda 500 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn 𝑋 ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹‘𝑥) ∈ 𝑦) |
26 | 22, 23, 25 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹‘𝑥) ∈ 𝑦) |
27 | | cnpimaex 22405 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ∧ 𝑦 ∈ 𝐾 ∧ (𝐹‘𝑥) ∈ 𝑦) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
28 | 19, 20, 26, 27 | syl3anc 1370 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦)) |
29 | | simpllr 773 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝐹:𝑋⟶𝑌) |
30 | 29 | ffund 6602 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → Fun 𝐹) |
31 | | simp-4l 780 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐽 ∈ (TopOn‘𝑋)) |
32 | | toponss 22074 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
33 | 31, 32 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
34 | 29, 14 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → dom 𝐹 = 𝑋) |
35 | 33, 34 | sseqtrrd 3967 |
. . . . . . . . . . . . . 14
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ dom 𝐹) |
36 | | funimass3 6928 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐹 ∧ 𝑢 ⊆ dom 𝐹) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
37 | 30, 35, 36 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝐹 “ 𝑢) ⊆ 𝑦 ↔ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
38 | 37 | anbi2d 629 |
. . . . . . . . . . . 12
⊢
((((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢 ∈ 𝐽) → ((𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
39 | 38 | rexbidva 3227 |
. . . . . . . . . . 11
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ (𝐹 “ 𝑢) ⊆ 𝑦) ↔ ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
40 | 28, 39 | mpbid 231 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑥 ∈ (◡𝐹 “ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
41 | 40 | expr 457 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ (◡𝐹 “ 𝑦)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
42 | 41 | ralimdva 3105 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ (◡𝐹 “ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
43 | 18, 42 | syld 47 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
44 | 43 | impr 455 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
45 | 44 | an32s 649 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦))) |
46 | | topontop 22060 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
47 | 46 | ad3antrrr 727 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → 𝐽 ∈ Top) |
48 | | eltop2 22123 |
. . . . . 6
⊢ (𝐽 ∈ Top → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
49 | 47, 48 | syl 17 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → ((◡𝐹 “ 𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (◡𝐹 “ 𝑦)∃𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ (◡𝐹 “ 𝑦)))) |
50 | 45, 49 | mpbird 256 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦 ∈ 𝐾) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
51 | 50 | ralrimiva 3110 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽) |
52 | 1 | adantr 481 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
53 | 12, 51, 52 | mpbir2and 710 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
54 | 11, 53 | impbida 798 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |