MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp Structured version   Visualization version   GIF version

Theorem cncnp 23006
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cncnp ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐾   π‘₯,𝑋   π‘₯,π‘Œ

Proof of Theorem cncnp
Dummy variables 𝑒 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscn 22961 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
21simprbda 497 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
3 eqid 2730 . . . . . . 7 βˆͺ 𝐽 = βˆͺ 𝐽
43cncnpi 23004 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ π‘₯ ∈ βˆͺ 𝐽) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
54ralrimiva 3144 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ βˆ€π‘₯ ∈ βˆͺ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
65adantl 480 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ βˆ€π‘₯ ∈ βˆͺ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
7 toponuni 22638 . . . . . 6 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
87ad2antrr 722 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝑋 = βˆͺ 𝐽)
98raleqdv 3323 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ↔ βˆ€π‘₯ ∈ βˆͺ 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
106, 9mpbird 256 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
112, 10jca 510 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
12 simprl 767 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
13 cnvimass 6081 . . . . . . . . . 10 (◑𝐹 β€œ 𝑦) βŠ† dom 𝐹
14 fdm 6727 . . . . . . . . . . 11 (𝐹:π‘‹βŸΆπ‘Œ β†’ dom 𝐹 = 𝑋)
1514adantl 480 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ dom 𝐹 = 𝑋)
1613, 15sseqtrid 4035 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (◑𝐹 β€œ 𝑦) βŠ† 𝑋)
17 ssralv 4051 . . . . . . . . 9 ((◑𝐹 β€œ 𝑦) βŠ† 𝑋 β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
1816, 17syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)))
19 simprr 769 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))
20 simpllr 772 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝑦 ∈ 𝐾)
21 ffn 6718 . . . . . . . . . . . . . 14 (𝐹:π‘‹βŸΆπ‘Œ β†’ 𝐹 Fn 𝑋)
2221ad2antlr 723 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹 Fn 𝑋)
23 simprl 767 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ π‘₯ ∈ (◑𝐹 β€œ 𝑦))
24 elpreima 7060 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 β†’ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ↔ (π‘₯ ∈ 𝑋 ∧ (πΉβ€˜π‘₯) ∈ 𝑦)))
2524simplbda 498 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑋 ∧ π‘₯ ∈ (◑𝐹 β€œ 𝑦)) β†’ (πΉβ€˜π‘₯) ∈ 𝑦)
2622, 23, 25syl2anc 582 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ (πΉβ€˜π‘₯) ∈ 𝑦)
27 cnpimaex 22982 . . . . . . . . . . . 12 ((𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ∧ 𝑦 ∈ 𝐾 ∧ (πΉβ€˜π‘₯) ∈ 𝑦) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦))
2819, 20, 26, 27syl3anc 1369 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦))
29 simpllr 772 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
3029ffund 6722 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ Fun 𝐹)
31 simp-4l 779 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
32 toponss 22651 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑒 ∈ 𝐽) β†’ 𝑒 βŠ† 𝑋)
3331, 32sylan 578 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ 𝑒 βŠ† 𝑋)
3429, 14syl 17 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ dom 𝐹 = 𝑋)
3533, 34sseqtrrd 4024 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ 𝑒 βŠ† dom 𝐹)
36 funimass3 7056 . . . . . . . . . . . . . 14 ((Fun 𝐹 ∧ 𝑒 βŠ† dom 𝐹) β†’ ((𝐹 β€œ 𝑒) βŠ† 𝑦 ↔ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
3730, 35, 36syl2anc 582 . . . . . . . . . . . . 13 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ ((𝐹 β€œ 𝑒) βŠ† 𝑦 ↔ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
3837anbi2d 627 . . . . . . . . . . . 12 ((((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑒 ∈ 𝐽) β†’ ((π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦) ↔ (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
3938rexbidva 3174 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ (βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ (𝐹 β€œ 𝑒) βŠ† 𝑦) ↔ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4028, 39mpbid 231 . . . . . . . . . 10 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (π‘₯ ∈ (◑𝐹 β€œ 𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
4140expr 455 . . . . . . . . 9 (((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ π‘₯ ∈ (◑𝐹 β€œ 𝑦)) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4241ralimdva 3165 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4318, 42syld 47 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4443impr 453 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝑦 ∈ 𝐾) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
4544an32s 648 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦)))
46 topontop 22637 . . . . . . 7 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
4746ad3antrrr 726 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ 𝐽 ∈ Top)
48 eltop2 22700 . . . . . 6 (𝐽 ∈ Top β†’ ((◑𝐹 β€œ 𝑦) ∈ 𝐽 ↔ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
4947, 48syl 17 . . . . 5 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ ((◑𝐹 β€œ 𝑦) ∈ 𝐽 ↔ βˆ€π‘₯ ∈ (◑𝐹 β€œ 𝑦)βˆƒπ‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 ∧ 𝑒 βŠ† (◑𝐹 β€œ 𝑦))))
5045, 49mpbird 256 . . . 4 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) ∧ 𝑦 ∈ 𝐾) β†’ (◑𝐹 β€œ 𝑦) ∈ 𝐽)
5150ralrimiva 3144 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)
521adantr 479 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
5312, 51, 52mpbir2and 709 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))) β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
5411, 53impbida 797 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068   βŠ† wss 3949  βˆͺ cuni 4909  β—‘ccnv 5676  dom cdm 5677   β€œ cima 5680  Fun wfun 6538   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7413  Topctop 22617  TopOnctopon 22634   Cn ccn 22950   CnP ccnp 22951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-map 8826  df-topgen 17395  df-top 22618  df-topon 22635  df-cn 22953  df-cnp 22954
This theorem is referenced by:  cncnp2  23007  cnnei  23008  cnconst2  23009  1stccn  23189  ptcn  23353  cnflf  23728  cnfcf  23768  symgtgp  23832  ghmcnp  23841  metcn  24274  txmetcn  24279  cnlimc  25639  dvcn  25672  dvcnvre  25770  psercn  26172  abelth  26187  cxpcn3  26490  cvmlift2lem11  34600  cvmlift2lem12  34601  cvmlift3lem8  34613  ioccncflimc  44901  cncfuni  44902  icccncfext  44903  icocncflimc  44905  cncfiooicclem1  44909  dirkercncflem2  45120  dirkercncflem4  45122  dirkercncf  45123  fourierdlem32  45155  fourierdlem33  45156  fourierdlem62  45184  fourierdlem93  45215  fourierdlem101  45223
  Copyright terms: Public domain W3C validator