MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp Structured version   Visualization version   GIF version

Theorem cncnp 23174
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cncnp ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncnp
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscn 23129 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
21simprbda 498 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
3 eqid 2730 . . . . . . 7 𝐽 = 𝐽
43cncnpi 23172 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
54ralrimiva 3126 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
65adantl 481 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
7 toponuni 22808 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
87ad2antrr 726 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝑋 = 𝐽)
96, 8raleqtrrdv 3305 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
102, 9jca 511 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
11 simprl 770 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹:𝑋𝑌)
12 cnvimass 6056 . . . . . . . . . 10 (𝐹𝑦) ⊆ dom 𝐹
13 fdm 6700 . . . . . . . . . . 11 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1413adantl 481 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝑋)
1512, 14sseqtrid 3992 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (𝐹𝑦) ⊆ 𝑋)
16 ssralv 4018 . . . . . . . . 9 ((𝐹𝑦) ⊆ 𝑋 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
1715, 16syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
18 simprr 772 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
19 simpllr 775 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑦𝐾)
20 ffn 6691 . . . . . . . . . . . . . 14 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
2120ad2antlr 727 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 Fn 𝑋)
22 simprl 770 . . . . . . . . . . . . 13 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝑥 ∈ (𝐹𝑦))
23 elpreima 7033 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹𝑦) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ 𝑦)))
2423simplbda 499 . . . . . . . . . . . . 13 ((𝐹 Fn 𝑋𝑥 ∈ (𝐹𝑦)) → (𝐹𝑥) ∈ 𝑦)
2521, 22, 24syl2anc 584 . . . . . . . . . . . 12 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹𝑥) ∈ 𝑦)
26 cnpimaex 23150 . . . . . . . . . . . 12 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ∧ 𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
2718, 19, 25, 26syl3anc 1373 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
28 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → 𝐹:𝑋𝑌)
2928ffund 6695 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → Fun 𝐹)
30 simp-4l 782 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐽 ∈ (TopOn‘𝑋))
31 toponss 22821 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢𝐽) → 𝑢𝑋)
3230, 31sylan 580 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → 𝑢𝑋)
3328, 13syl 17 . . . . . . . . . . . . . . 15 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → dom 𝐹 = 𝑋)
3432, 33sseqtrrd 3987 . . . . . . . . . . . . . 14 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → 𝑢 ⊆ dom 𝐹)
35 funimass3 7029 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑢 ⊆ dom 𝐹) → ((𝐹𝑢) ⊆ 𝑦𝑢 ⊆ (𝐹𝑦)))
3629, 34, 35syl2anc 584 . . . . . . . . . . . . 13 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → ((𝐹𝑢) ⊆ 𝑦𝑢 ⊆ (𝐹𝑦)))
3736anbi2d 630 . . . . . . . . . . . 12 ((((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑢𝐽) → ((𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
3837rexbidva 3156 . . . . . . . . . . 11 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
3927, 38mpbid 232 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ (𝑥 ∈ (𝐹𝑦) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦)))
4039expr 456 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) ∧ 𝑥 ∈ (𝐹𝑦)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4140ralimdva 3146 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ (𝐹𝑦)𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4217, 41syld 47 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4342impr 454 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑦𝐾) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦)))
4443an32s 652 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦)))
45 topontop 22807 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
4645ad3antrrr 730 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → 𝐽 ∈ Top)
47 eltop2 22869 . . . . . 6 (𝐽 ∈ Top → ((𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4846, 47syl 17 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → ((𝐹𝑦) ∈ 𝐽 ↔ ∀𝑥 ∈ (𝐹𝑦)∃𝑢𝐽 (𝑥𝑢𝑢 ⊆ (𝐹𝑦))))
4944, 48mpbird 257 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
5049ralrimiva 3126 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)
511adantr 480 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
5211, 50, 51mpbir2and 713 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾))
5310, 52impbida 800 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   cuni 4874  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Topctop 22787  TopOnctopon 22804   Cn ccn 23118   CnP ccnp 23119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-topgen 17413  df-top 22788  df-topon 22805  df-cn 23121  df-cnp 23122
This theorem is referenced by:  cncnp2  23175  cnnei  23176  cnconst2  23177  1stccn  23357  ptcn  23521  cnflf  23896  cnfcf  23936  symgtgp  24000  ghmcnp  24009  metcn  24438  txmetcn  24443  cnlimc  25796  dvcn  25830  dvcnvre  25931  psercn  26343  abelth  26358  cxpcn3  26665  cvmlift2lem11  35307  cvmlift2lem12  35308  cvmlift3lem8  35320  ioccncflimc  45890  cncfuni  45891  icccncfext  45892  icocncflimc  45894  cncfiooicclem1  45898  dirkercncflem2  46109  dirkercncflem4  46111  dirkercncf  46112  fourierdlem32  46144  fourierdlem33  46145  fourierdlem62  46173  fourierdlem93  46204  fourierdlem101  46212
  Copyright terms: Public domain W3C validator