Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds0 Structured version   Visualization version   GIF version

Theorem linds0 45694
Description: The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
linds0 (𝑀𝑉 → ∅ linIndS 𝑀)

Proof of Theorem linds0
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4440 . . . . . 6 𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))
212a1i 12 . . . . 5 (𝑀𝑉 → ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
3 0ex 5226 . . . . . 6 ∅ ∈ V
4 breq1 5073 . . . . . . . . 9 (𝑓 = ∅ → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
5 oveq1 7262 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
65eqeq1d 2740 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓( linC ‘𝑀)∅) = (0g𝑀) ↔ (∅( linC ‘𝑀)∅) = (0g𝑀)))
74, 6anbi12d 630 . . . . . . . 8 (𝑓 = ∅ → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) ↔ (∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀))))
8 fveq1 6755 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓𝑥) = (∅‘𝑥))
98eqeq1d 2740 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
109ralbidv 3120 . . . . . . . 8 (𝑓 = ∅ → (∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
117, 10imbi12d 344 . . . . . . 7 (𝑓 = ∅ → (((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
1211ralsng 4606 . . . . . 6 (∅ ∈ V → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
133, 12mp1i 13 . . . . 5 (𝑀𝑉 → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
142, 13mpbird 256 . . . 4 (𝑀𝑉 → ∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
15 fvex 6769 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
16 map0e 8628 . . . . . . 7 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
1715, 16mp1i 13 . . . . . 6 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
18 df1o2 8279 . . . . . 6 1o = {∅}
1917, 18eqtrdi 2795 . . . . 5 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
2019raleqdv 3339 . . . 4 (𝑀𝑉 → (∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
2114, 20mpbird 256 . . 3 (𝑀𝑉 → ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
22 0elpw 5273 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2321, 22jctil 519 . 2 (𝑀𝑉 → (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
24 eqid 2738 . . . 4 (Base‘𝑀) = (Base‘𝑀)
25 eqid 2738 . . . 4 (0g𝑀) = (0g𝑀)
26 eqid 2738 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
27 eqid 2738 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
28 eqid 2738 . . . 4 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
2924, 25, 26, 27, 28islininds 45675 . . 3 ((∅ ∈ V ∧ 𝑀𝑉) → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
303, 29mpan 686 . 2 (𝑀𝑉 → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
3123, 30mpbird 256 1 (𝑀𝑉 → ∅ linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573   finSupp cfsupp 9058  Basecbs 16840  Scalarcsca 16891  0gc0g 17067   linC clinc 45633   linIndS clininds 45669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1o 8267  df-map 8575  df-lininds 45671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator