Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds0 Structured version   Visualization version   GIF version

Theorem linds0 45267
 Description: The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
linds0 (𝑀𝑉 → ∅ linIndS 𝑀)

Proof of Theorem linds0
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4408 . . . . . 6 𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))
212a1i 12 . . . . 5 (𝑀𝑉 → ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
3 0ex 5180 . . . . . 6 ∅ ∈ V
4 breq1 5038 . . . . . . . . 9 (𝑓 = ∅ → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
5 oveq1 7162 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
65eqeq1d 2760 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓( linC ‘𝑀)∅) = (0g𝑀) ↔ (∅( linC ‘𝑀)∅) = (0g𝑀)))
74, 6anbi12d 633 . . . . . . . 8 (𝑓 = ∅ → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) ↔ (∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀))))
8 fveq1 6661 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓𝑥) = (∅‘𝑥))
98eqeq1d 2760 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
109ralbidv 3126 . . . . . . . 8 (𝑓 = ∅ → (∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
117, 10imbi12d 348 . . . . . . 7 (𝑓 = ∅ → (((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
1211ralsng 4573 . . . . . 6 (∅ ∈ V → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
133, 12mp1i 13 . . . . 5 (𝑀𝑉 → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
142, 13mpbird 260 . . . 4 (𝑀𝑉 → ∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
15 fvex 6675 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
16 map0e 8469 . . . . . . 7 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
1715, 16mp1i 13 . . . . . 6 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
18 df1o2 8131 . . . . . 6 1o = {∅}
1917, 18eqtrdi 2809 . . . . 5 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
2019raleqdv 3329 . . . 4 (𝑀𝑉 → (∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
2114, 20mpbird 260 . . 3 (𝑀𝑉 → ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
22 0elpw 5227 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2321, 22jctil 523 . 2 (𝑀𝑉 → (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
24 eqid 2758 . . . 4 (Base‘𝑀) = (Base‘𝑀)
25 eqid 2758 . . . 4 (0g𝑀) = (0g𝑀)
26 eqid 2758 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
27 eqid 2758 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
28 eqid 2758 . . . 4 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
2924, 25, 26, 27, 28islininds 45248 . . 3 ((∅ ∈ V ∧ 𝑀𝑉) → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
303, 29mpan 689 . 2 (𝑀𝑉 → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
3123, 30mpbird 260 1 (𝑀𝑉 → ∅ linIndS 𝑀)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409  ∅c0 4227  𝒫 cpw 4497  {csn 4525   class class class wbr 5035  ‘cfv 6339  (class class class)co 7155  1oc1o 8110   ↑m cmap 8421   finSupp cfsupp 8871  Basecbs 16546  Scalarcsca 16631  0gc0g 16776   linC clinc 45206   linIndS clininds 45242 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1o 8117  df-map 8423  df-lininds 45244 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator