Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds0 Structured version   Visualization version   GIF version

Theorem linds0 44527
Description: The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
linds0 (𝑀𝑉 → ∅ linIndS 𝑀)

Proof of Theorem linds0
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4458 . . . . . 6 𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))
212a1i 12 . . . . 5 (𝑀𝑉 → ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
3 0ex 5213 . . . . . 6 ∅ ∈ V
4 breq1 5071 . . . . . . . . 9 (𝑓 = ∅ → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
5 oveq1 7165 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
65eqeq1d 2825 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓( linC ‘𝑀)∅) = (0g𝑀) ↔ (∅( linC ‘𝑀)∅) = (0g𝑀)))
74, 6anbi12d 632 . . . . . . . 8 (𝑓 = ∅ → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) ↔ (∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀))))
8 fveq1 6671 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓𝑥) = (∅‘𝑥))
98eqeq1d 2825 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
109ralbidv 3199 . . . . . . . 8 (𝑓 = ∅ → (∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
117, 10imbi12d 347 . . . . . . 7 (𝑓 = ∅ → (((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
1211ralsng 4615 . . . . . 6 (∅ ∈ V → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
133, 12mp1i 13 . . . . 5 (𝑀𝑉 → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
142, 13mpbird 259 . . . 4 (𝑀𝑉 → ∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
15 fvex 6685 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
16 map0e 8448 . . . . . . 7 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
1715, 16mp1i 13 . . . . . 6 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
18 df1o2 8118 . . . . . 6 1o = {∅}
1917, 18syl6eq 2874 . . . . 5 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
2019raleqdv 3417 . . . 4 (𝑀𝑉 → (∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
2114, 20mpbird 259 . . 3 (𝑀𝑉 → ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
22 0elpw 5258 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2321, 22jctil 522 . 2 (𝑀𝑉 → (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
24 eqid 2823 . . . 4 (Base‘𝑀) = (Base‘𝑀)
25 eqid 2823 . . . 4 (0g𝑀) = (0g𝑀)
26 eqid 2823 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
27 eqid 2823 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
28 eqid 2823 . . . 4 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
2924, 25, 26, 27, 28islininds 44508 . . 3 ((∅ ∈ V ∧ 𝑀𝑉) → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
303, 29mpan 688 . 2 (𝑀𝑉 → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
3123, 30mpbird 259 1 (𝑀𝑉 → ∅ linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  c0 4293  𝒫 cpw 4541  {csn 4569   class class class wbr 5068  cfv 6357  (class class class)co 7158  1oc1o 8097  m cmap 8408   finSupp cfsupp 8835  Basecbs 16485  Scalarcsca 16570  0gc0g 16715   linC clinc 44466   linIndS clininds 44502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1o 8104  df-map 8410  df-lininds 44504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator