Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds0 Structured version   Visualization version   GIF version

Theorem linds0 48454
Description: The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
linds0 (𝑀𝑉 → ∅ linIndS 𝑀)

Proof of Theorem linds0
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4476 . . . . . 6 𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))
212a1i 12 . . . . 5 (𝑀𝑉 → ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
3 0ex 5262 . . . . . 6 ∅ ∈ V
4 breq1 5110 . . . . . . . . 9 (𝑓 = ∅ → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
5 oveq1 7394 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
65eqeq1d 2731 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓( linC ‘𝑀)∅) = (0g𝑀) ↔ (∅( linC ‘𝑀)∅) = (0g𝑀)))
74, 6anbi12d 632 . . . . . . . 8 (𝑓 = ∅ → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) ↔ (∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀))))
8 fveq1 6857 . . . . . . . . . 10 (𝑓 = ∅ → (𝑓𝑥) = (∅‘𝑥))
98eqeq1d 2731 . . . . . . . . 9 (𝑓 = ∅ → ((𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
109ralbidv 3156 . . . . . . . 8 (𝑓 = ∅ → (∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)) ↔ ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀))))
117, 10imbi12d 344 . . . . . . 7 (𝑓 = ∅ → (((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
1211ralsng 4639 . . . . . 6 (∅ ∈ V → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
133, 12mp1i 13 . . . . 5 (𝑀𝑉 → (∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))) ↔ ((∅ finSupp (0g‘(Scalar‘𝑀)) ∧ (∅( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (∅‘𝑥) = (0g‘(Scalar‘𝑀)))))
142, 13mpbird 257 . . . 4 (𝑀𝑉 → ∀𝑓 ∈ {∅} ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
15 fvex 6871 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
16 map0e 8855 . . . . . 6 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
1715, 16mp1i 13 . . . . 5 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
18 df1o2 8441 . . . . 5 1o = {∅}
1917, 18eqtrdi 2780 . . . 4 (𝑀𝑉 → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
2014, 19raleqtrrdv 3303 . . 3 (𝑀𝑉 → ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))
21 0elpw 5311 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2220, 21jctil 519 . 2 (𝑀𝑉 → (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀)))))
23 eqid 2729 . . . 4 (Base‘𝑀) = (Base‘𝑀)
24 eqid 2729 . . . 4 (0g𝑀) = (0g𝑀)
25 eqid 2729 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
26 eqid 2729 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
27 eqid 2729 . . . 4 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
2823, 24, 25, 26, 27islininds 48435 . . 3 ((∅ ∈ V ∧ 𝑀𝑉) → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
293, 28mpan 690 . 2 (𝑀𝑉 → (∅ linIndS 𝑀 ↔ (∅ ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)∅) = (0g𝑀)) → ∀𝑥 ∈ ∅ (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
3022, 29mpbird 257 1 (𝑀𝑉 → ∅ linIndS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  c0 4296  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  1oc1o 8427  m cmap 8799   finSupp cfsupp 9312  Basecbs 17179  Scalarcsca 17223  0gc0g 17402   linC clinc 48393   linIndS clininds 48429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-map 8801  df-lininds 48431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator