|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsv3 | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34385. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | 
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | 
| Ref | Expression | 
|---|---|
| eulerpartlemsv3 | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eulerpartlems.r | . . 3 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | eulerpartlems.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
| 3 | 1, 2 | eulerpartlemsv1 34359 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) | 
| 4 | fzssuz 13606 | . . . . 5 ⊢ (1...(𝑆‘𝐴)) ⊆ (ℤ≥‘1) | |
| 5 | nnuz 12922 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 4, 5 | sseqtrri 4032 | . . . 4 ⊢ (1...(𝑆‘𝐴)) ⊆ ℕ | 
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (1...(𝑆‘𝐴)) ⊆ ℕ) | 
| 8 | 1, 2 | eulerpartlemelr 34360 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) | 
| 9 | 8 | simpld 494 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) | 
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝐴:ℕ⟶ℕ0) | 
| 11 | 7 | sselda 3982 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℕ) | 
| 12 | 10, 11 | ffvelcdmd 7104 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℕ0) | 
| 13 | 12 | nn0cnd 12591 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℂ) | 
| 14 | 11 | nncnd 12283 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℂ) | 
| 15 | 13, 14 | mulcld 11282 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → ((𝐴‘𝑘) · 𝑘) ∈ ℂ) | 
| 16 | 1, 2 | eulerpartlems 34363 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))) → (𝐴‘𝑡) = 0) | 
| 17 | 16 | ralrimiva 3145 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) | 
| 18 | fveqeq2 6914 | . . . . . . . . 9 ⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) = 0 ↔ (𝐴‘𝑡) = 0)) | |
| 19 | 18 | cbvralvw 3236 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0 ↔ ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) | 
| 20 | 17, 19 | sylibr 234 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0) | 
| 21 | 1, 2 | eulerpartlemsf 34362 | . . . . . . . . 9 ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 | 
| 22 | 21 | ffvelcdmi 7102 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) ∈ ℕ0) | 
| 23 | nndiffz1 32789 | . . . . . . . 8 ⊢ ((𝑆‘𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) | |
| 24 | 22, 23 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) | 
| 25 | 20, 24 | raleqtrrdv 3329 | . . . . . 6 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0) | 
| 26 | 25 | r19.21bi 3250 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑘) = 0) | 
| 27 | 26 | oveq1d 7447 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = (0 · 𝑘)) | 
| 28 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) | |
| 29 | 28 | eldifad 3962 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℕ) | 
| 30 | 29 | nncnd 12283 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℂ) | 
| 31 | 30 | mul02d 11460 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (0 · 𝑘) = 0) | 
| 32 | 27, 31 | eqtrd 2776 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = 0) | 
| 33 | 5 | eqimssi 4043 | . . . 4 ⊢ ℕ ⊆ (ℤ≥‘1) | 
| 34 | 33 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ≥‘1)) | 
| 35 | 7, 15, 32, 34 | sumss 15761 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) | 
| 36 | 3, 35 | eqtr4d 2779 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 ∖ cdif 3947 ∩ cin 3949 ⊆ wss 3950 ↦ cmpt 5224 ◡ccnv 5683 “ cima 5687 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ↑m cmap 8867 Fincfn 8986 0cc0 11156 1c1 11157 + caddc 11159 · cmul 11161 ℕcn 12267 ℕ0cn0 12528 ℤ≥cuz 12879 ...cfz 13548 Σcsu 15723 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 | 
| This theorem is referenced by: eulerpartlemgc 34365 | 
| Copyright terms: Public domain | W3C validator |