Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsv3 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 32649. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.) |
Ref | Expression |
---|---|
eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
Ref | Expression |
---|---|
eulerpartlemsv3 | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpartlems.r | . . 3 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | eulerpartlems.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
3 | 1, 2 | eulerpartlemsv1 32623 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
4 | fzssuz 13398 | . . . . 5 ⊢ (1...(𝑆‘𝐴)) ⊆ (ℤ≥‘1) | |
5 | nnuz 12722 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | sseqtrri 3969 | . . . 4 ⊢ (1...(𝑆‘𝐴)) ⊆ ℕ |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (1...(𝑆‘𝐴)) ⊆ ℕ) |
8 | 1, 2 | eulerpartlemelr 32624 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
9 | 8 | simpld 495 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝐴:ℕ⟶ℕ0) |
11 | 7 | sselda 3932 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℕ) |
12 | 10, 11 | ffvelcdmd 7018 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℕ0) |
13 | 12 | nn0cnd 12396 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℂ) |
14 | 11 | nncnd 12090 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℂ) |
15 | 13, 14 | mulcld 11096 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → ((𝐴‘𝑘) · 𝑘) ∈ ℂ) |
16 | 1, 2 | eulerpartlems 32627 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))) → (𝐴‘𝑡) = 0) |
17 | 16 | ralrimiva 3139 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
18 | fveqeq2 6834 | . . . . . . . . 9 ⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) = 0 ↔ (𝐴‘𝑡) = 0)) | |
19 | 18 | cbvralvw 3221 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0 ↔ ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
20 | 17, 19 | sylibr 233 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0) |
21 | 1, 2 | eulerpartlemsf 32626 | . . . . . . . . . 10 ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
22 | 21 | ffvelcdmi 7016 | . . . . . . . . 9 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) ∈ ℕ0) |
23 | nndiffz1 31394 | . . . . . . . . 9 ⊢ ((𝑆‘𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) |
25 | 24 | raleqdv 3309 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0 ↔ ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0)) |
26 | 20, 25 | mpbird 256 | . . . . . 6 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0) |
27 | 26 | r19.21bi 3230 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑘) = 0) |
28 | 27 | oveq1d 7352 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = (0 · 𝑘)) |
29 | simpr 485 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) | |
30 | 29 | eldifad 3910 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℕ) |
31 | 30 | nncnd 12090 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℂ) |
32 | 31 | mul02d 11274 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (0 · 𝑘) = 0) |
33 | 28, 32 | eqtrd 2776 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = 0) |
34 | 5 | eqimssi 3990 | . . . 4 ⊢ ℕ ⊆ (ℤ≥‘1) |
35 | 34 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ≥‘1)) |
36 | 7, 15, 33, 35 | sumss 15535 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
37 | 3, 36 | eqtr4d 2779 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cab 2713 ∀wral 3061 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 ↦ cmpt 5175 ◡ccnv 5619 “ cima 5623 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ↑m cmap 8686 Fincfn 8804 0cc0 10972 1c1 10973 + caddc 10975 · cmul 10977 ℕcn 12074 ℕ0cn0 12334 ℤ≥cuz 12683 ...cfz 13340 Σcsu 15496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-rlim 15297 df-sum 15497 |
This theorem is referenced by: eulerpartlemgc 32629 |
Copyright terms: Public domain | W3C validator |