Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv3 Structured version   Visualization version   GIF version

Theorem eulerpartlemsv3 34381
Description: Lemma for eulerpart 34402. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsv3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑆,𝑘
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem eulerpartlemsv3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.r . . 3 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . 3 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsv1 34376 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
4 fzssuz 13471 . . . . 5 (1...(𝑆𝐴)) ⊆ (ℤ‘1)
5 nnuz 12781 . . . . 5 ℕ = (ℤ‘1)
64, 5sseqtrri 3979 . . . 4 (1...(𝑆𝐴)) ⊆ ℕ
76a1i 11 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (1...(𝑆𝐴)) ⊆ ℕ)
81, 2eulerpartlemelr 34377 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
98simpld 494 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
109adantr 480 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝐴:ℕ⟶ℕ0)
117sselda 3929 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℕ)
1210, 11ffvelcdmd 7024 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℕ0)
1312nn0cnd 12450 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℂ)
1411nncnd 12147 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℂ)
1513, 14mulcld 11138 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
161, 2eulerpartlems 34380 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
1716ralrimiva 3124 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑡) = 0)
18 fveqeq2 6837 . . . . . . . . 9 (𝑘 = 𝑡 → ((𝐴𝑘) = 0 ↔ (𝐴𝑡) = 0))
1918cbvralvw 3210 . . . . . . . 8 (∀𝑘 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑘) = 0 ↔ ∀𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑡) = 0)
2017, 19sylibr 234 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑘) = 0)
211, 2eulerpartlemsf 34379 . . . . . . . . 9 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
2221ffvelcdmi 7022 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
23 nndiffz1 32776 . . . . . . . 8 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
2422, 23syl 17 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
2520, 24raleqtrrdv 3296 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))(𝐴𝑘) = 0)
2625r19.21bi 3224 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑘) = 0)
2726oveq1d 7367 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
28 simpr 484 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴))))
2928eldifad 3909 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑘 ∈ ℕ)
3029nncnd 12147 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑘 ∈ ℂ)
3130mul02d 11317 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (0 · 𝑘) = 0)
3227, 31eqtrd 2766 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑘) · 𝑘) = 0)
335eqimssi 3990 . . . 4 ℕ ⊆ (ℤ‘1)
3433a1i 11 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ‘1))
357, 15, 32, 34sumss 15637 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
363, 35eqtr4d 2769 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  cdif 3894  cin 3896  wss 3897  cmpt 5174  ccnv 5618  cima 5622  wf 6483  cfv 6487  (class class class)co 7352  m cmap 8756  Fincfn 8875  0cc0 11012  1c1 11013   + caddc 11015   · cmul 11017  cn 12131  0cn0 12387  cuz 12738  ...cfz 13413  Σcsu 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-n0 12388  df-z 12475  df-uz 12739  df-rp 12897  df-fz 13414  df-fzo 13561  df-fl 13702  df-seq 13915  df-exp 13975  df-hash 14244  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-clim 15401  df-rlim 15402  df-sum 15600
This theorem is referenced by:  eulerpartlemgc  34382
  Copyright terms: Public domain W3C validator