Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsv3 Structured version   Visualization version   GIF version

Theorem eulerpartlemsv3 31733
 Description: Lemma for eulerpart 31754. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsv3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑆,𝑘
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem eulerpartlemsv3
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.r . . 3 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
2 eulerpartlems.s . . 3 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
31, 2eulerpartlemsv1 31728 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
4 fzssuz 12947 . . . . 5 (1...(𝑆𝐴)) ⊆ (ℤ‘1)
5 nnuz 12273 . . . . 5 ℕ = (ℤ‘1)
64, 5sseqtrri 3955 . . . 4 (1...(𝑆𝐴)) ⊆ ℕ
76a1i 11 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (1...(𝑆𝐴)) ⊆ ℕ)
81, 2eulerpartlemelr 31729 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
98simpld 498 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
109adantr 484 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝐴:ℕ⟶ℕ0)
117sselda 3918 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℕ)
1210, 11ffvelrnd 6833 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℕ0)
1312nn0cnd 11949 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℂ)
1411nncnd 11645 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℂ)
1513, 14mulcld 10654 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
161, 2eulerpartlems 31732 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
1716ralrimiva 3152 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑡) = 0)
18 fveqeq2 6658 . . . . . . . . 9 (𝑘 = 𝑡 → ((𝐴𝑘) = 0 ↔ (𝐴𝑡) = 0))
1918cbvralvw 3399 . . . . . . . 8 (∀𝑘 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑘) = 0 ↔ ∀𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑡) = 0)
2017, 19sylibr 237 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑘) = 0)
211, 2eulerpartlemsf 31731 . . . . . . . . . 10 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
2221ffvelrni 6831 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
23 nndiffz1 30539 . . . . . . . . 9 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
2422, 23syl 17 . . . . . . . 8 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
2524raleqdv 3367 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (∀𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))(𝐴𝑘) = 0 ↔ ∀𝑘 ∈ (ℤ‘((𝑆𝐴) + 1))(𝐴𝑘) = 0))
2620, 25mpbird 260 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))(𝐴𝑘) = 0)
2726r19.21bi 3176 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑘) = 0)
2827oveq1d 7154 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
29 simpr 488 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴))))
3029eldifad 3896 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑘 ∈ ℕ)
3130nncnd 11645 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑘 ∈ ℂ)
3231mul02d 10831 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (0 · 𝑘) = 0)
3328, 32eqtrd 2836 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑘) · 𝑘) = 0)
345eqimssi 3976 . . . 4 ℕ ⊆ (ℤ‘1)
3534a1i 11 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ‘1))
367, 15, 33, 35sumss 15077 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
373, 36eqtr4d 2839 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  {cab 2779  ∀wral 3109   ∖ cdif 3881   ∩ cin 3883   ⊆ wss 3884   ↦ cmpt 5113  ◡ccnv 5522   “ cima 5526  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ↑m cmap 8393  Fincfn 8496  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  ℕcn 11629  ℕ0cn0 11889  ℤ≥cuz 12235  ...cfz 12889  Σcsu 15038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039 This theorem is referenced by:  eulerpartlemgc  31734
 Copyright terms: Public domain W3C validator