Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsv3 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 32249. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.) |
Ref | Expression |
---|---|
eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
Ref | Expression |
---|---|
eulerpartlemsv3 | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpartlems.r | . . 3 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | eulerpartlems.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
3 | 1, 2 | eulerpartlemsv1 32223 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
4 | fzssuz 13226 | . . . . 5 ⊢ (1...(𝑆‘𝐴)) ⊆ (ℤ≥‘1) | |
5 | nnuz 12550 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | sseqtrri 3954 | . . . 4 ⊢ (1...(𝑆‘𝐴)) ⊆ ℕ |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (1...(𝑆‘𝐴)) ⊆ ℕ) |
8 | 1, 2 | eulerpartlemelr 32224 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
9 | 8 | simpld 494 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝐴:ℕ⟶ℕ0) |
11 | 7 | sselda 3917 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℕ) |
12 | 10, 11 | ffvelrnd 6944 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℕ0) |
13 | 12 | nn0cnd 12225 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℂ) |
14 | 11 | nncnd 11919 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℂ) |
15 | 13, 14 | mulcld 10926 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → ((𝐴‘𝑘) · 𝑘) ∈ ℂ) |
16 | 1, 2 | eulerpartlems 32227 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))) → (𝐴‘𝑡) = 0) |
17 | 16 | ralrimiva 3107 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
18 | fveqeq2 6765 | . . . . . . . . 9 ⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) = 0 ↔ (𝐴‘𝑡) = 0)) | |
19 | 18 | cbvralvw 3372 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0 ↔ ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
20 | 17, 19 | sylibr 233 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0) |
21 | 1, 2 | eulerpartlemsf 32226 | . . . . . . . . . 10 ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
22 | 21 | ffvelrni 6942 | . . . . . . . . 9 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) ∈ ℕ0) |
23 | nndiffz1 31009 | . . . . . . . . 9 ⊢ ((𝑆‘𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) | |
24 | 22, 23 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) |
25 | 24 | raleqdv 3339 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0 ↔ ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0)) |
26 | 20, 25 | mpbird 256 | . . . . . 6 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0) |
27 | 26 | r19.21bi 3132 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑘) = 0) |
28 | 27 | oveq1d 7270 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = (0 · 𝑘)) |
29 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) | |
30 | 29 | eldifad 3895 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℕ) |
31 | 30 | nncnd 11919 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℂ) |
32 | 31 | mul02d 11103 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (0 · 𝑘) = 0) |
33 | 28, 32 | eqtrd 2778 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = 0) |
34 | 5 | eqimssi 3975 | . . . 4 ⊢ ℕ ⊆ (ℤ≥‘1) |
35 | 34 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ≥‘1)) |
36 | 7, 15, 33, 35 | sumss 15364 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
37 | 3, 36 | eqtr4d 2781 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℕcn 11903 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 |
This theorem is referenced by: eulerpartlemgc 32229 |
Copyright terms: Public domain | W3C validator |