Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmlid2 Structured version   Visualization version   GIF version

Theorem 2zrngnmlid2 48235
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmlid2 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑏 · 𝑎) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmlid2
StepHypRef Expression
1 2zrng.e . . 3 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . 3 𝑅 = (ℂflds 𝐸)
3 2zrngmmgm.1 . . 3 𝑀 = (mulGrp‘𝑅)
41, 2, 32zrngnmrid 48234 . 2 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
5 eldifi 4096 . . . . . . . . . 10 (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎𝐸)
6 elrabi 3656 . . . . . . . . . . . 12 (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ)
76zcnd 12645 . . . . . . . . . . 11 (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ)
87, 1eleq2s 2847 . . . . . . . . . 10 (𝑎𝐸𝑎 ∈ ℂ)
95, 8syl 17 . . . . . . . . 9 (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ ℂ)
10 elrabi 3656 . . . . . . . . . . 11 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ)
1110zcnd 12645 . . . . . . . . . 10 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ)
1211, 1eleq2s 2847 . . . . . . . . 9 (𝑏𝐸𝑏 ∈ ℂ)
13 mulcom 11160 . . . . . . . . 9 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
149, 12, 13syl2an 596 . . . . . . . 8 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
1514eqcomd 2736 . . . . . . 7 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → (𝑏 · 𝑎) = (𝑎 · 𝑏))
1615eqeq1d 2732 . . . . . 6 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → ((𝑏 · 𝑎) = 𝑎 ↔ (𝑎 · 𝑏) = 𝑎))
1716biimpd 229 . . . . 5 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → ((𝑏 · 𝑎) = 𝑎 → (𝑎 · 𝑏) = 𝑎))
1817necon3d 2947 . . . 4 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → ((𝑎 · 𝑏) ≠ 𝑎 → (𝑏 · 𝑎) ≠ 𝑎))
1918ralimdva 3146 . . 3 (𝑎 ∈ (𝐸 ∖ {0}) → (∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑏𝐸 (𝑏 · 𝑎) ≠ 𝑎))
2019ralimia 3064 . 2 (∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑏 · 𝑎) ≠ 𝑎)
214, 20ax-mp 5 1 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑏 · 𝑎) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3913  {csn 4591  cfv 6513  (class class class)co 7389  cc 11072  0cc0 11074   · cmul 11079  2c2 12242  cz 12535  s cress 17206  mulGrpcmgp 20055  fldccnfld 21270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator