![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid2 | Structured version Visualization version GIF version |
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngnmlid2 | ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
4 | 1, 2, 3 | 2zrngnmrid 47897 | . 2 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 |
5 | eldifi 4148 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ 𝐸) | |
6 | elrabi 3698 | . . . . . . . . . . . 12 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
7 | 6 | zcnd 12744 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
8 | 7, 1 | eleq2s 2856 | . . . . . . . . . 10 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
9 | 5, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ ℂ) |
10 | elrabi 3698 | . . . . . . . . . . 11 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
11 | 10 | zcnd 12744 | . . . . . . . . . 10 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
12 | 11, 1 | eleq2s 2856 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
13 | mulcom 11266 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) | |
14 | 9, 12, 13 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) |
15 | 14 | eqcomd 2740 | . . . . . . 7 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑏 · 𝑎) = (𝑎 · 𝑏)) |
16 | 15 | eqeq1d 2736 | . . . . . 6 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 ↔ (𝑎 · 𝑏) = 𝑎)) |
17 | 16 | biimpd 229 | . . . . 5 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 → (𝑎 · 𝑏) = 𝑎)) |
18 | 17 | necon3d 2963 | . . . 4 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑎 · 𝑏) ≠ 𝑎 → (𝑏 · 𝑎) ≠ 𝑎)) |
19 | 18 | ralimdva 3169 | . . 3 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → (∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎)) |
20 | 19 | ralimia 3082 | . 2 ⊢ (∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
21 | 4, 20 | ax-mp 5 | 1 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∀wral 3063 ∃wrex 3072 {crab 3438 ∖ cdif 3967 {csn 4648 ‘cfv 6572 (class class class)co 7445 ℂcc 11178 0cc0 11180 · cmul 11185 2c2 12344 ℤcz 12635 ↾s cress 17282 mulGrpcmgp 20156 ℂfldccnfld 21382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-n0 12550 df-z 12636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |