Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid2 | Structured version Visualization version GIF version |
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngnmlid2 | ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
4 | 1, 2, 3 | 2zrngnmrid 45396 | . 2 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 |
5 | eldifi 4057 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ 𝐸) | |
6 | elrabi 3611 | . . . . . . . . . . . 12 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
7 | 6 | zcnd 12356 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
8 | 7, 1 | eleq2s 2857 | . . . . . . . . . 10 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
9 | 5, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ ℂ) |
10 | elrabi 3611 | . . . . . . . . . . 11 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
11 | 10 | zcnd 12356 | . . . . . . . . . 10 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
12 | 11, 1 | eleq2s 2857 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
13 | mulcom 10888 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) | |
14 | 9, 12, 13 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) |
15 | 14 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑏 · 𝑎) = (𝑎 · 𝑏)) |
16 | 15 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 ↔ (𝑎 · 𝑏) = 𝑎)) |
17 | 16 | biimpd 228 | . . . . 5 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 → (𝑎 · 𝑏) = 𝑎)) |
18 | 17 | necon3d 2963 | . . . 4 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑎 · 𝑏) ≠ 𝑎 → (𝑏 · 𝑎) ≠ 𝑎)) |
19 | 18 | ralimdva 3102 | . . 3 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → (∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎)) |
20 | 19 | ralimia 3084 | . 2 ⊢ (∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
21 | 4, 20 | ax-mp 5 | 1 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ∖ cdif 3880 {csn 4558 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 2c2 11958 ℤcz 12249 ↾s cress 16867 mulGrpcmgp 19635 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |