| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid2 | Structured version Visualization version GIF version | ||
| Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| 2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| 2zrngnmlid2 | ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 3 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 4 | 1, 2, 3 | 2zrngnmrid 48173 | . 2 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 |
| 5 | eldifi 4102 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ 𝐸) | |
| 6 | elrabi 3662 | . . . . . . . . . . . 12 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
| 7 | 6 | zcnd 12655 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
| 8 | 7, 1 | eleq2s 2847 | . . . . . . . . . 10 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
| 9 | 5, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ ℂ) |
| 10 | elrabi 3662 | . . . . . . . . . . 11 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
| 11 | 10 | zcnd 12655 | . . . . . . . . . 10 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
| 12 | 11, 1 | eleq2s 2847 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
| 13 | mulcom 11172 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) | |
| 14 | 9, 12, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) |
| 15 | 14 | eqcomd 2736 | . . . . . . 7 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑏 · 𝑎) = (𝑎 · 𝑏)) |
| 16 | 15 | eqeq1d 2732 | . . . . . 6 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 ↔ (𝑎 · 𝑏) = 𝑎)) |
| 17 | 16 | biimpd 229 | . . . . 5 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 → (𝑎 · 𝑏) = 𝑎)) |
| 18 | 17 | necon3d 2948 | . . . 4 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑎 · 𝑏) ≠ 𝑎 → (𝑏 · 𝑎) ≠ 𝑎)) |
| 19 | 18 | ralimdva 3147 | . . 3 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → (∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎)) |
| 20 | 19 | ralimia 3065 | . 2 ⊢ (∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
| 21 | 4, 20 | ax-mp 5 | 1 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 ∃wrex 3055 {crab 3411 ∖ cdif 3919 {csn 4597 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 0cc0 11086 · cmul 11091 2c2 12252 ℤcz 12545 ↾s cress 17206 mulGrpcmgp 20055 ℂfldccnfld 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-n0 12459 df-z 12546 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |