Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid2 | Structured version Visualization version GIF version |
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngnmlid2 | ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
3 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
4 | 1, 2, 3 | 2zrngnmrid 45548 | . 2 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 |
5 | eldifi 4064 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ 𝐸) | |
6 | elrabi 3620 | . . . . . . . . . . . 12 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
7 | 6 | zcnd 12455 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
8 | 7, 1 | eleq2s 2852 | . . . . . . . . . 10 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
9 | 5, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ ℂ) |
10 | elrabi 3620 | . . . . . . . . . . 11 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
11 | 10 | zcnd 12455 | . . . . . . . . . 10 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
12 | 11, 1 | eleq2s 2852 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
13 | mulcom 10985 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) | |
14 | 9, 12, 13 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) |
15 | 14 | eqcomd 2739 | . . . . . . 7 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑏 · 𝑎) = (𝑎 · 𝑏)) |
16 | 15 | eqeq1d 2735 | . . . . . 6 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 ↔ (𝑎 · 𝑏) = 𝑎)) |
17 | 16 | biimpd 228 | . . . . 5 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 → (𝑎 · 𝑏) = 𝑎)) |
18 | 17 | necon3d 2959 | . . . 4 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑎 · 𝑏) ≠ 𝑎 → (𝑏 · 𝑎) ≠ 𝑎)) |
19 | 18 | ralimdva 3158 | . . 3 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → (∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎)) |
20 | 19 | ralimia 3077 | . 2 ⊢ (∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
21 | 4, 20 | ax-mp 5 | 1 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3221 ∖ cdif 3886 {csn 4564 ‘cfv 6447 (class class class)co 7295 ℂcc 10897 0cc0 10899 · cmul 10904 2c2 12056 ℤcz 12347 ↾s cress 16969 mulGrpcmgp 19748 ℂfldccnfld 20625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |