| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid2 | Structured version Visualization version GIF version | ||
| Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| 2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| 2zrngnmlid2 | ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 3 | 2zrngmmgm.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 4 | 1, 2, 3 | 2zrngnmrid 48234 | . 2 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 |
| 5 | eldifi 4096 | . . . . . . . . . 10 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ 𝐸) | |
| 6 | elrabi 3656 | . . . . . . . . . . . 12 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℤ) | |
| 7 | 6 | zcnd 12645 | . . . . . . . . . . 11 ⊢ (𝑎 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑎 ∈ ℂ) |
| 8 | 7, 1 | eleq2s 2847 | . . . . . . . . . 10 ⊢ (𝑎 ∈ 𝐸 → 𝑎 ∈ ℂ) |
| 9 | 5, 8 | syl 17 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → 𝑎 ∈ ℂ) |
| 10 | elrabi 3656 | . . . . . . . . . . 11 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
| 11 | 10 | zcnd 12645 | . . . . . . . . . 10 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
| 12 | 11, 1 | eleq2s 2847 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
| 13 | mulcom 11160 | . . . . . . . . 9 ⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) | |
| 14 | 9, 12, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) |
| 15 | 14 | eqcomd 2736 | . . . . . . 7 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → (𝑏 · 𝑎) = (𝑎 · 𝑏)) |
| 16 | 15 | eqeq1d 2732 | . . . . . 6 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 ↔ (𝑎 · 𝑏) = 𝑎)) |
| 17 | 16 | biimpd 229 | . . . . 5 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑏 · 𝑎) = 𝑎 → (𝑎 · 𝑏) = 𝑎)) |
| 18 | 17 | necon3d 2947 | . . . 4 ⊢ ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏 ∈ 𝐸) → ((𝑎 · 𝑏) ≠ 𝑎 → (𝑏 · 𝑎) ≠ 𝑎)) |
| 19 | 18 | ralimdva 3146 | . . 3 ⊢ (𝑎 ∈ (𝐸 ∖ {0}) → (∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎)) |
| 20 | 19 | ralimia 3064 | . 2 ⊢ (∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑎 · 𝑏) ≠ 𝑎 → ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
| 21 | 4, 20 | ax-mp 5 | 1 ⊢ ∀𝑎 ∈ (𝐸 ∖ {0})∀𝑏 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ∖ cdif 3913 {csn 4591 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 · cmul 11079 2c2 12242 ℤcz 12535 ↾s cress 17206 mulGrpcmgp 20055 ℂfldccnfld 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |