| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | serf0.4 | . . . . 5
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | 
| 2 |  | serf0.2 | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 3 |  | caucvgb.1 | . . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 4 | 3 | caucvgb 15717 | . . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) | 
| 5 | 2, 1, 4 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥))) | 
| 6 | 1, 5 | mpbid 232 | . . . 4
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥)) | 
| 7 | 3 | cau3 15395 | . . . 4
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) | 
| 8 | 6, 7 | sylib 218 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥)) | 
| 9 | 3 | peano2uzs 12945 | . . . . . . 7
⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) | 
| 10 | 9 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) | 
| 11 |  | eluzelz 12889 | . . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → 𝑚 ∈ ℤ) | 
| 12 |  | uzid 12894 | . . . . . . . . . 10
⊢ (𝑚 ∈ ℤ → 𝑚 ∈
(ℤ≥‘𝑚)) | 
| 13 |  | peano2uz 12944 | . . . . . . . . . 10
⊢ (𝑚 ∈
(ℤ≥‘𝑚) → (𝑚 + 1) ∈
(ℤ≥‘𝑚)) | 
| 14 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘𝑘) = (seq𝑀( + , 𝐹)‘(𝑚 + 1))) | 
| 15 | 14 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑘 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘)) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) | 
| 16 | 15 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑘 = (𝑚 + 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))))) | 
| 17 | 16 | breq1d 5152 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑚 + 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 18 | 17 | rspcv 3617 | . . . . . . . . . 10
⊢ ((𝑚 + 1) ∈
(ℤ≥‘𝑚) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 19 | 11, 12, 13, 18 | 4syl 19 | . . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 20 | 19 | adantld 490 | . . . . . . . 8
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥)) | 
| 21 | 20 | ralimia 3079 | . . . . . . 7
⊢
(∀𝑚 ∈
(ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥) | 
| 22 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | 
| 23 | 22, 3 | eleqtrdi 2850 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) | 
| 24 |  | eluzelz 12889 | . . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | 
| 25 | 23, 24 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) | 
| 26 |  | eluzp1m1 12905 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) | 
| 27 | 25, 26 | sylan 580 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈
(ℤ≥‘𝑗)) | 
| 28 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘𝑚) = (seq𝑀( + , 𝐹)‘(𝑘 − 1))) | 
| 29 |  | fvoveq1 7455 | . . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 − 1) → (seq𝑀( + , 𝐹)‘(𝑚 + 1)) = (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) | 
| 30 | 28, 29 | oveq12d 7450 | . . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 − 1) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) | 
| 31 | 30 | fveq2d 6909 | . . . . . . . . . . . 12
⊢ (𝑚 = (𝑘 − 1) → (abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))))) | 
| 32 | 31 | breq1d 5152 | . . . . . . . . . . 11
⊢ (𝑚 = (𝑘 − 1) → ((abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 ↔ (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) | 
| 33 | 32 | rspcv 3617 | . . . . . . . . . 10
⊢ ((𝑘 − 1) ∈
(ℤ≥‘𝑗) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) | 
| 34 | 27, 33 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥)) | 
| 35 |  | serf0.5 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 36 | 3, 2, 35 | serf 14072 | . . . . . . . . . . . . . 14
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) | 
| 37 | 36 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ) | 
| 38 | 3 | uztrn2 12898 | . . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ 𝑍 ∧ (𝑘 − 1) ∈
(ℤ≥‘𝑗)) → (𝑘 − 1) ∈ 𝑍) | 
| 39 | 22, 27, 38 | syl2an2r 685 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝑘 − 1) ∈ 𝑍) | 
| 40 | 37, 39 | ffvelcdmd 7104 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘(𝑘 − 1)) ∈ ℂ) | 
| 41 | 3 | uztrn2 12898 | . . . . . . . . . . . . . 14
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) | 
| 42 | 10, 41 | sylan 580 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) | 
| 43 | 37, 42 | ffvelcdmd 7104 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) ∈ ℂ) | 
| 44 | 40, 43 | abssubd 15493 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) | 
| 45 |  | eluzelz 12889 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘(𝑗 + 1)) → 𝑘 ∈ ℤ) | 
| 46 | 45 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℤ) | 
| 47 | 46 | zcnd 12725 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
ℂ) | 
| 48 |  | ax-1cn 11214 | . . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ | 
| 49 |  | npcan 11518 | . . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑘 −
1) + 1) = 𝑘) | 
| 50 | 47, 48, 49 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((𝑘 − 1) + 1) = 𝑘) | 
| 51 | 50 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)) = (seq𝑀( + , 𝐹)‘𝑘)) | 
| 52 | 51 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1))) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘))) | 
| 53 | 52 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘((seq𝑀( + , 𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘𝑘)))) | 
| 54 | 2 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑀 ∈ ℤ) | 
| 55 |  | eluzp1p1 12907 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 56 | 23, 55 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 57 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) | 
| 58 | 57 | uztrn2 12898 | . . . . . . . . . . . . . . . 16
⊢ (((𝑗 + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) | 
| 59 | 56, 58 | sylan 580 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) | 
| 60 |  | seqm1 14061 | . . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘))) | 
| 61 | 54, 59, 60 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (seq𝑀( + , 𝐹)‘𝑘) = ((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘))) | 
| 62 | 61 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) | 
| 63 | 35 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 64 | 42, 63 | syldan 591 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℂ) | 
| 65 | 40, 64 | pncan2d 11623 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (((seq𝑀( + , 𝐹)‘(𝑘 − 1)) + (𝐹‘𝑘)) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))) = (𝐹‘𝑘)) | 
| 66 | 62, 65 | eqtr2d 2777 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (𝐹‘𝑘) = ((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1)))) | 
| 67 | 66 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (abs‘(𝐹‘𝑘)) = (abs‘((seq𝑀( + , 𝐹)‘𝑘) − (seq𝑀( + , 𝐹)‘(𝑘 − 1))))) | 
| 68 | 44, 53, 67 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
(abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) = (abs‘(𝐹‘𝑘))) | 
| 69 | 68 | breq1d 5152 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) →
((abs‘((seq𝑀( + ,
𝐹)‘(𝑘 − 1)) − (seq𝑀( + , 𝐹)‘((𝑘 − 1) + 1)))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 70 | 34, 69 | sylibd 239 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → (∀𝑚 ∈
(ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → (abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 71 | 70 | ralrimdva 3153 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘(𝑚 + 1)))) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 72 | 21, 71 | syl5 34 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 73 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑛 = (𝑗 + 1) →
(ℤ≥‘𝑛) = (ℤ≥‘(𝑗 + 1))) | 
| 74 | 73 | raleqdv 3325 | . . . . . . 7
⊢ (𝑛 = (𝑗 + 1) → (∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 75 | 74 | rspcev 3621 | . . . . . 6
⊢ (((𝑗 + 1) ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘(𝑗 + 1))(abs‘(𝐹‘𝑘)) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) | 
| 76 | 10, 72, 75 | syl6an 684 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 77 | 76 | rexlimdva 3154 | . . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 78 | 77 | ralimdv 3168 | . . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑚 ∈ (ℤ≥‘𝑗)((seq𝑀( + , 𝐹)‘𝑚) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐹)‘𝑘))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 79 | 8, 78 | mpd 15 | . 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥) | 
| 80 |  | serf0.3 | . . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) | 
| 81 |  | eqidd 2737 | . . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 82 | 3, 2, 80, 81, 35 | clim0c 15544 | . 2
⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑛 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(𝐹‘𝑘)) < 𝑥)) | 
| 83 | 79, 82 | mpbird 257 | 1
⊢ (𝜑 → 𝐹 ⇝ 0) |