MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem3 Structured version   Visualization version   GIF version

Theorem tz9.12lem3 9547
Description: Lemma for tz9.12 9548. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem3 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem3
StepHypRef Expression
1 tz9.12lem.2 . . . . . . . . . . 11 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
21funmpt2 6473 . . . . . . . . . 10 Fun 𝐹
3 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝑅1𝑣) = (𝑅1𝑦))
43eleq2d 2824 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥 ∈ (𝑅1𝑣) ↔ 𝑥 ∈ (𝑅1𝑦)))
54rspcev 3561 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → ∃𝑣 ∈ On 𝑥 ∈ (𝑅1𝑣))
6 rabn0 4319 . . . . . . . . . . . . 13 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ On 𝑥 ∈ (𝑅1𝑣))
75, 6sylibr 233 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅)
8 intex 5261 . . . . . . . . . . . 12 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ ↔ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
97, 8sylib 217 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
10 vex 3436 . . . . . . . . . . . 12 𝑥 ∈ V
11 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 ∈ (𝑅1𝑣) ↔ 𝑥 ∈ (𝑅1𝑣)))
1211rabbidv 3414 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
1312inteqd 4884 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
1413eleq1d 2823 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ( {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V ↔ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V))
151dmmpt 6143 . . . . . . . . . . . . 13 dom 𝐹 = {𝑧 ∈ V ∣ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V}
1614, 15elrab2 3627 . . . . . . . . . . . 12 (𝑥 ∈ dom 𝐹 ↔ (𝑥 ∈ V ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V))
1710, 16mpbiran 706 . . . . . . . . . . 11 (𝑥 ∈ dom 𝐹 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
189, 17sylibr 233 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → 𝑥 ∈ dom 𝐹)
19 funfvima 7106 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
202, 18, 19sylancr 587 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
21 tz9.12lem.1 . . . . . . . . . . 11 𝐴 ∈ V
2221, 1tz9.12lem2 9546 . . . . . . . . . 10 suc (𝐹𝐴) ∈ On
2321, 1tz9.12lem1 9545 . . . . . . . . . . . 12 (𝐹𝐴) ⊆ On
24 onsucuni 7675 . . . . . . . . . . . 12 ((𝐹𝐴) ⊆ On → (𝐹𝐴) ⊆ suc (𝐹𝐴))
2523, 24ax-mp 5 . . . . . . . . . . 11 (𝐹𝐴) ⊆ suc (𝐹𝐴)
2625sseli 3917 . . . . . . . . . 10 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ∈ suc (𝐹𝐴))
27 r1ord2 9539 . . . . . . . . . 10 (suc (𝐹𝐴) ∈ On → ((𝐹𝑥) ∈ suc (𝐹𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴))))
2822, 26, 27mpsyl 68 . . . . . . . . 9 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴)))
2920, 28syl6 35 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → (𝑥𝐴 → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴))))
3029imp 407 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴)))
3113, 1fvmptg 6873 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V) → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3210, 31mpan 687 . . . . . . . . . . 11 ( {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
338, 32sylbi 216 . . . . . . . . . 10 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
34 ssrab2 4013 . . . . . . . . . . 11 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ⊆ On
35 onint 7640 . . . . . . . . . . 11 (({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3634, 35mpan 687 . . . . . . . . . 10 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3733, 36eqeltrd 2839 . . . . . . . . 9 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → (𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
38 fveq2 6774 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (𝑅1𝑦) = (𝑅1‘(𝐹𝑥)))
3938eleq2d 2824 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) → (𝑥 ∈ (𝑅1𝑦) ↔ 𝑥 ∈ (𝑅1‘(𝐹𝑥))))
404cbvrabv 3426 . . . . . . . . . . 11 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1𝑦)}
4139, 40elrab2 3627 . . . . . . . . . 10 ((𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ↔ ((𝐹𝑥) ∈ On ∧ 𝑥 ∈ (𝑅1‘(𝐹𝑥))))
4241simprbi 497 . . . . . . . . 9 ((𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
437, 37, 423syl 18 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
4443adantr 481 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
4530, 44sseldd 3922 . . . . . 6 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
4645exp31 420 . . . . 5 (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) → (𝑥𝐴𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))))
4746com3r 87 . . . 4 (𝑥𝐴 → (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))))
4847rexlimdv 3212 . . 3 (𝑥𝐴 → (∃𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴))))
4948ralimia 3085 . 2 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
50 r1suc 9528 . . . . 5 (suc (𝐹𝐴) ∈ On → (𝑅1‘suc suc (𝐹𝐴)) = 𝒫 (𝑅1‘suc (𝐹𝐴)))
5122, 50ax-mp 5 . . . 4 (𝑅1‘suc suc (𝐹𝐴)) = 𝒫 (𝑅1‘suc (𝐹𝐴))
5251eleq2i 2830 . . 3 (𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)) ↔ 𝐴 ∈ 𝒫 (𝑅1‘suc (𝐹𝐴)))
5321elpw 4537 . . 3 (𝐴 ∈ 𝒫 (𝑅1‘suc (𝐹𝐴)) ↔ 𝐴 ⊆ (𝑅1‘suc (𝐹𝐴)))
54 dfss3 3909 . . 3 (𝐴 ⊆ (𝑅1‘suc (𝐹𝐴)) ↔ ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
5552, 53, 543bitri 297 . 2 (𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)) ↔ ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
5649, 55sylibr 233 1 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   cint 4879  cmpt 5157  dom cdm 5589  cima 5592  Oncon0 6266  suc csuc 6268  Fun wfun 6427  cfv 6433  𝑅1cr1 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522
This theorem is referenced by:  tz9.12  9548
  Copyright terms: Public domain W3C validator