MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem3 Structured version   Visualization version   GIF version

Theorem tz9.12lem3 9220
Description: Lemma for tz9.12 9221. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem3 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem3
StepHypRef Expression
1 tz9.12lem.2 . . . . . . . . . . 11 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
21funmpt2 6396 . . . . . . . . . 10 Fun 𝐹
3 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝑅1𝑣) = (𝑅1𝑦))
43eleq2d 2900 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥 ∈ (𝑅1𝑣) ↔ 𝑥 ∈ (𝑅1𝑦)))
54rspcev 3625 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → ∃𝑣 ∈ On 𝑥 ∈ (𝑅1𝑣))
6 rabn0 4341 . . . . . . . . . . . . 13 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ On 𝑥 ∈ (𝑅1𝑣))
75, 6sylibr 236 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅)
8 intex 5242 . . . . . . . . . . . 12 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ ↔ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
97, 8sylib 220 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
10 vex 3499 . . . . . . . . . . . 12 𝑥 ∈ V
11 eleq1w 2897 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 ∈ (𝑅1𝑣) ↔ 𝑥 ∈ (𝑅1𝑣)))
1211rabbidv 3482 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
1312inteqd 4883 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
1413eleq1d 2899 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ( {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V ↔ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V))
151dmmpt 6096 . . . . . . . . . . . . 13 dom 𝐹 = {𝑧 ∈ V ∣ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V}
1614, 15elrab2 3685 . . . . . . . . . . . 12 (𝑥 ∈ dom 𝐹 ↔ (𝑥 ∈ V ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V))
1710, 16mpbiran 707 . . . . . . . . . . 11 (𝑥 ∈ dom 𝐹 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
189, 17sylibr 236 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → 𝑥 ∈ dom 𝐹)
19 funfvima 6994 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
202, 18, 19sylancr 589 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
21 tz9.12lem.1 . . . . . . . . . . 11 𝐴 ∈ V
2221, 1tz9.12lem2 9219 . . . . . . . . . 10 suc (𝐹𝐴) ∈ On
2321, 1tz9.12lem1 9218 . . . . . . . . . . . 12 (𝐹𝐴) ⊆ On
24 onsucuni 7545 . . . . . . . . . . . 12 ((𝐹𝐴) ⊆ On → (𝐹𝐴) ⊆ suc (𝐹𝐴))
2523, 24ax-mp 5 . . . . . . . . . . 11 (𝐹𝐴) ⊆ suc (𝐹𝐴)
2625sseli 3965 . . . . . . . . . 10 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ∈ suc (𝐹𝐴))
27 r1ord2 9212 . . . . . . . . . 10 (suc (𝐹𝐴) ∈ On → ((𝐹𝑥) ∈ suc (𝐹𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴))))
2822, 26, 27mpsyl 68 . . . . . . . . 9 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴)))
2920, 28syl6 35 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → (𝑥𝐴 → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴))))
3029imp 409 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴)))
3113, 1fvmptg 6768 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V) → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3210, 31mpan 688 . . . . . . . . . . 11 ( {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
338, 32sylbi 219 . . . . . . . . . 10 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
34 ssrab2 4058 . . . . . . . . . . 11 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ⊆ On
35 onint 7512 . . . . . . . . . . 11 (({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3634, 35mpan 688 . . . . . . . . . 10 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3733, 36eqeltrd 2915 . . . . . . . . 9 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → (𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
38 fveq2 6672 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (𝑅1𝑦) = (𝑅1‘(𝐹𝑥)))
3938eleq2d 2900 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) → (𝑥 ∈ (𝑅1𝑦) ↔ 𝑥 ∈ (𝑅1‘(𝐹𝑥))))
404cbvrabv 3493 . . . . . . . . . . 11 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1𝑦)}
4139, 40elrab2 3685 . . . . . . . . . 10 ((𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ↔ ((𝐹𝑥) ∈ On ∧ 𝑥 ∈ (𝑅1‘(𝐹𝑥))))
4241simprbi 499 . . . . . . . . 9 ((𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
437, 37, 423syl 18 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
4443adantr 483 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
4530, 44sseldd 3970 . . . . . 6 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
4645exp31 422 . . . . 5 (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) → (𝑥𝐴𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))))
4746com3r 87 . . . 4 (𝑥𝐴 → (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))))
4847rexlimdv 3285 . . 3 (𝑥𝐴 → (∃𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴))))
4948ralimia 3160 . 2 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
50 r1suc 9201 . . . . 5 (suc (𝐹𝐴) ∈ On → (𝑅1‘suc suc (𝐹𝐴)) = 𝒫 (𝑅1‘suc (𝐹𝐴)))
5122, 50ax-mp 5 . . . 4 (𝑅1‘suc suc (𝐹𝐴)) = 𝒫 (𝑅1‘suc (𝐹𝐴))
5251eleq2i 2906 . . 3 (𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)) ↔ 𝐴 ∈ 𝒫 (𝑅1‘suc (𝐹𝐴)))
5321elpw 4545 . . 3 (𝐴 ∈ 𝒫 (𝑅1‘suc (𝐹𝐴)) ↔ 𝐴 ⊆ (𝑅1‘suc (𝐹𝐴)))
54 dfss3 3958 . . 3 (𝐴 ⊆ (𝑅1‘suc (𝐹𝐴)) ↔ ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
5552, 53, 543bitri 299 . 2 (𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)) ↔ ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
5649, 55sylibr 236 1 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840   cint 4878  cmpt 5148  dom cdm 5557  cima 5560  Oncon0 6193  suc csuc 6195  Fun wfun 6351  cfv 6357  𝑅1cr1 9193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-r1 9195
This theorem is referenced by:  tz9.12  9221
  Copyright terms: Public domain W3C validator