MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem3 Structured version   Visualization version   GIF version

Theorem tz9.12lem3 9674
Description: Lemma for tz9.12 9675. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
tz9.12lem.1 𝐴 ∈ V
tz9.12lem.2 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
Assertion
Ref Expression
tz9.12lem3 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐹(𝑧,𝑣)

Proof of Theorem tz9.12lem3
StepHypRef Expression
1 tz9.12lem.2 . . . . . . . . . . 11 𝐹 = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
21funmpt2 6516 . . . . . . . . . 10 Fun 𝐹
3 fveq2 6817 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → (𝑅1𝑣) = (𝑅1𝑦))
43eleq2d 2815 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥 ∈ (𝑅1𝑣) ↔ 𝑥 ∈ (𝑅1𝑦)))
54rspcev 3575 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → ∃𝑣 ∈ On 𝑥 ∈ (𝑅1𝑣))
6 rabn0 4337 . . . . . . . . . . . . 13 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ On 𝑥 ∈ (𝑅1𝑣))
75, 6sylibr 234 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅)
8 intex 5280 . . . . . . . . . . . 12 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ ↔ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
97, 8sylib 218 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
10 vex 3438 . . . . . . . . . . . 12 𝑥 ∈ V
11 eleq1w 2812 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑧 ∈ (𝑅1𝑣) ↔ 𝑥 ∈ (𝑅1𝑣)))
1211rabbidv 3400 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
1312inteqd 4900 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
1413eleq1d 2814 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ( {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V ↔ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V))
151dmmpt 6184 . . . . . . . . . . . . 13 dom 𝐹 = {𝑧 ∈ V ∣ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)} ∈ V}
1614, 15elrab2 3648 . . . . . . . . . . . 12 (𝑥 ∈ dom 𝐹 ↔ (𝑥 ∈ V ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V))
1710, 16mpbiran 709 . . . . . . . . . . 11 (𝑥 ∈ dom 𝐹 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V)
189, 17sylibr 234 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → 𝑥 ∈ dom 𝐹)
19 funfvima 7159 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
202, 18, 19sylancr 587 . . . . . . . . 9 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → (𝑥𝐴 → (𝐹𝑥) ∈ (𝐹𝐴)))
21 tz9.12lem.1 . . . . . . . . . . 11 𝐴 ∈ V
2221, 1tz9.12lem2 9673 . . . . . . . . . 10 suc (𝐹𝐴) ∈ On
2321, 1tz9.12lem1 9672 . . . . . . . . . . . 12 (𝐹𝐴) ⊆ On
24 onsucuni 7753 . . . . . . . . . . . 12 ((𝐹𝐴) ⊆ On → (𝐹𝐴) ⊆ suc (𝐹𝐴))
2523, 24ax-mp 5 . . . . . . . . . . 11 (𝐹𝐴) ⊆ suc (𝐹𝐴)
2625sseli 3928 . . . . . . . . . 10 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝐹𝑥) ∈ suc (𝐹𝐴))
27 r1ord2 9666 . . . . . . . . . 10 (suc (𝐹𝐴) ∈ On → ((𝐹𝑥) ∈ suc (𝐹𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴))))
2822, 26, 27mpsyl 68 . . . . . . . . 9 ((𝐹𝑥) ∈ (𝐹𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴)))
2920, 28syl6 35 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → (𝑥𝐴 → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴))))
3029imp 406 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → (𝑅1‘(𝐹𝑥)) ⊆ (𝑅1‘suc (𝐹𝐴)))
3113, 1fvmptg 6922 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V) → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3210, 31mpan 690 . . . . . . . . . . 11 ( {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ V → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
338, 32sylbi 217 . . . . . . . . . 10 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → (𝐹𝑥) = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
34 ssrab2 4028 . . . . . . . . . . 11 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ⊆ On
35 onint 7718 . . . . . . . . . . 11 (({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3634, 35mpan 690 . . . . . . . . . 10 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
3733, 36eqeltrd 2829 . . . . . . . . 9 ({𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ≠ ∅ → (𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)})
38 fveq2 6817 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (𝑅1𝑦) = (𝑅1‘(𝐹𝑥)))
3938eleq2d 2815 . . . . . . . . . . 11 (𝑦 = (𝐹𝑥) → (𝑥 ∈ (𝑅1𝑦) ↔ 𝑥 ∈ (𝑅1‘(𝐹𝑥))))
404cbvrabv 3403 . . . . . . . . . . 11 {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1𝑦)}
4139, 40elrab2 3648 . . . . . . . . . 10 ((𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} ↔ ((𝐹𝑥) ∈ On ∧ 𝑥 ∈ (𝑅1‘(𝐹𝑥))))
4241simprbi 496 . . . . . . . . 9 ((𝐹𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1𝑣)} → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
437, 37, 423syl 18 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
4443adantr 480 . . . . . . 7 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1‘(𝐹𝑥)))
4530, 44sseldd 3933 . . . . . 6 (((𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦)) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
4645exp31 419 . . . . 5 (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) → (𝑥𝐴𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))))
4746com3r 87 . . . 4 (𝑥𝐴 → (𝑦 ∈ On → (𝑥 ∈ (𝑅1𝑦) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))))
4847rexlimdv 3129 . . 3 (𝑥𝐴 → (∃𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝑥 ∈ (𝑅1‘suc (𝐹𝐴))))
4948ralimia 3064 . 2 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
50 r1suc 9655 . . . . 5 (suc (𝐹𝐴) ∈ On → (𝑅1‘suc suc (𝐹𝐴)) = 𝒫 (𝑅1‘suc (𝐹𝐴)))
5122, 50ax-mp 5 . . . 4 (𝑅1‘suc suc (𝐹𝐴)) = 𝒫 (𝑅1‘suc (𝐹𝐴))
5251eleq2i 2821 . . 3 (𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)) ↔ 𝐴 ∈ 𝒫 (𝑅1‘suc (𝐹𝐴)))
5321elpw 4552 . . 3 (𝐴 ∈ 𝒫 (𝑅1‘suc (𝐹𝐴)) ↔ 𝐴 ⊆ (𝑅1‘suc (𝐹𝐴)))
54 dfss3 3921 . . 3 (𝐴 ⊆ (𝑅1‘suc (𝐹𝐴)) ↔ ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
5552, 53, 543bitri 297 . 2 (𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)) ↔ ∀𝑥𝐴 𝑥 ∈ (𝑅1‘suc (𝐹𝐴)))
5649, 55sylibr 234 1 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  wss 3900  c0 4281  𝒫 cpw 4548   cuni 4857   cint 4895  cmpt 5170  dom cdm 5614  cima 5617  Oncon0 6302  suc csuc 6304  Fun wfun 6471  cfv 6477  𝑅1cr1 9647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-r1 9649
This theorem is referenced by:  tz9.12  9675
  Copyright terms: Public domain W3C validator