Proof of Theorem tz9.12lem3
Step | Hyp | Ref
| Expression |
1 | | tz9.12lem.2 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣
∈ On ∣ 𝑧 ∈
(𝑅1‘𝑣)}) |
2 | 1 | funmpt2 6457 |
. . . . . . . . . 10
⊢ Fun 𝐹 |
3 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑦 → (𝑅1‘𝑣) =
(𝑅1‘𝑦)) |
4 | 3 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑦 → (𝑥 ∈ (𝑅1‘𝑣) ↔ 𝑥 ∈ (𝑅1‘𝑦))) |
5 | 4 | rspcev 3552 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) → ∃𝑣 ∈ On 𝑥 ∈ (𝑅1‘𝑣)) |
6 | | rabn0 4316 |
. . . . . . . . . . . . 13
⊢ ({𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ≠ ∅ ↔ ∃𝑣 ∈ On 𝑥 ∈ (𝑅1‘𝑣)) |
7 | 5, 6 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) → {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)} ≠
∅) |
8 | | intex 5256 |
. . . . . . . . . . . 12
⊢ ({𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ≠ ∅ ↔ ∩ {𝑣
∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ V) |
9 | 7, 8 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) → ∩ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ V) |
10 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
11 | | eleq1w 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑥 → (𝑧 ∈ (𝑅1‘𝑣) ↔ 𝑥 ∈ (𝑅1‘𝑣))) |
12 | 11 | rabbidv 3404 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)} = {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)}) |
13 | 12 | inteqd 4881 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → ∩ {𝑣 ∈ On ∣ 𝑧 ∈
(𝑅1‘𝑣)} = ∩ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)}) |
14 | 13 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (∩ {𝑣 ∈ On ∣ 𝑧 ∈
(𝑅1‘𝑣)} ∈ V ↔ ∩ {𝑣
∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ V)) |
15 | 1 | dmmpt 6132 |
. . . . . . . . . . . . 13
⊢ dom 𝐹 = {𝑧 ∈ V ∣ ∩ {𝑣
∈ On ∣ 𝑧 ∈
(𝑅1‘𝑣)} ∈ V} |
16 | 14, 15 | elrab2 3620 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ dom 𝐹 ↔ (𝑥 ∈ V ∧ ∩
{𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ V)) |
17 | 10, 16 | mpbiran 705 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ dom 𝐹 ↔ ∩ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ V) |
18 | 9, 17 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) → 𝑥 ∈ dom 𝐹) |
19 | | funfvima 7088 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) |
20 | 2, 18, 19 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ (𝐹 “ 𝐴))) |
21 | | tz9.12lem.1 |
. . . . . . . . . . 11
⊢ 𝐴 ∈ V |
22 | 21, 1 | tz9.12lem2 9477 |
. . . . . . . . . 10
⊢ suc ∪ (𝐹
“ 𝐴) ∈
On |
23 | 21, 1 | tz9.12lem1 9476 |
. . . . . . . . . . . 12
⊢ (𝐹 “ 𝐴) ⊆ On |
24 | | onsucuni 7650 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ 𝐴) ⊆ On → (𝐹 “ 𝐴) ⊆ suc ∪
(𝐹 “ 𝐴)) |
25 | 23, 24 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐹 “ 𝐴) ⊆ suc ∪
(𝐹 “ 𝐴) |
26 | 25 | sseli 3913 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝐹‘𝑥) ∈ suc ∪
(𝐹 “ 𝐴)) |
27 | | r1ord2 9470 |
. . . . . . . . . 10
⊢ (suc
∪ (𝐹 “ 𝐴) ∈ On → ((𝐹‘𝑥) ∈ suc ∪
(𝐹 “ 𝐴) →
(𝑅1‘(𝐹‘𝑥)) ⊆ (𝑅1‘suc
∪ (𝐹 “ 𝐴)))) |
28 | 22, 26, 27 | mpsyl 68 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ (𝐹 “ 𝐴) → (𝑅1‘(𝐹‘𝑥)) ⊆ (𝑅1‘suc
∪ (𝐹 “ 𝐴))) |
29 | 20, 28 | syl6 35 |
. . . . . . . 8
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) → (𝑥 ∈ 𝐴 → (𝑅1‘(𝐹‘𝑥)) ⊆ (𝑅1‘suc
∪ (𝐹 “ 𝐴)))) |
30 | 29 | imp 406 |
. . . . . . 7
⊢ (((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝑅1‘(𝐹‘𝑥)) ⊆ (𝑅1‘suc
∪ (𝐹 “ 𝐴))) |
31 | 13, 1 | fvmptg 6855 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ V ∧ ∩ {𝑣
∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ V) → (𝐹‘𝑥) = ∩ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)}) |
32 | 10, 31 | mpan 686 |
. . . . . . . . . . 11
⊢ (∩ {𝑣
∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ V → (𝐹‘𝑥) = ∩ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)}) |
33 | 8, 32 | sylbi 216 |
. . . . . . . . . 10
⊢ ({𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ≠ ∅ → (𝐹‘𝑥) = ∩ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)}) |
34 | | ssrab2 4009 |
. . . . . . . . . . 11
⊢ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ⊆ On |
35 | | onint 7617 |
. . . . . . . . . . 11
⊢ (({𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ⊆ On ∧ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)} ≠ ∅) → ∩ {𝑣
∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)}) |
36 | 34, 35 | mpan 686 |
. . . . . . . . . 10
⊢ ({𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ≠ ∅ → ∩ {𝑣
∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)}) |
37 | 33, 36 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ({𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} ≠ ∅ → (𝐹‘𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)}) |
38 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑥) → (𝑅1‘𝑦) =
(𝑅1‘(𝐹‘𝑥))) |
39 | 38 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑥) → (𝑥 ∈ (𝑅1‘𝑦) ↔ 𝑥 ∈ (𝑅1‘(𝐹‘𝑥)))) |
40 | 4 | cbvrabv 3416 |
. . . . . . . . . . 11
⊢ {𝑣 ∈ On ∣ 𝑥 ∈
(𝑅1‘𝑣)} = {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑦)} |
41 | 39, 40 | elrab2 3620 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)} ↔ ((𝐹‘𝑥) ∈ On ∧ 𝑥 ∈ (𝑅1‘(𝐹‘𝑥)))) |
42 | 41 | simprbi 496 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ {𝑣 ∈ On ∣ 𝑥 ∈ (𝑅1‘𝑣)} → 𝑥 ∈ (𝑅1‘(𝐹‘𝑥))) |
43 | 7, 37, 42 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) → 𝑥 ∈ (𝑅1‘(𝐹‘𝑥))) |
44 | 43 | adantr 480 |
. . . . . . 7
⊢ (((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘(𝐹‘𝑥))) |
45 | 30, 44 | sseldd 3918 |
. . . . . 6
⊢ (((𝑦 ∈ On ∧ 𝑥 ∈
(𝑅1‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘suc
∪ (𝐹 “ 𝐴))) |
46 | 45 | exp31 419 |
. . . . 5
⊢ (𝑦 ∈ On → (𝑥 ∈
(𝑅1‘𝑦) → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝑅1‘suc
∪ (𝐹 “ 𝐴))))) |
47 | 46 | com3r 87 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ On → (𝑥 ∈ (𝑅1‘𝑦) → 𝑥 ∈ (𝑅1‘suc
∪ (𝐹 “ 𝐴))))) |
48 | 47 | rexlimdv 3211 |
. . 3
⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝑥 ∈ (𝑅1‘suc
∪ (𝐹 “ 𝐴)))) |
49 | 48 | ralimia 3084 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑅1‘suc
∪ (𝐹 “ 𝐴))) |
50 | | r1suc 9459 |
. . . . 5
⊢ (suc
∪ (𝐹 “ 𝐴) ∈ On →
(𝑅1‘suc suc ∪ (𝐹 “ 𝐴)) = 𝒫
(𝑅1‘suc ∪ (𝐹 “ 𝐴))) |
51 | 22, 50 | ax-mp 5 |
. . . 4
⊢
(𝑅1‘suc suc ∪ (𝐹 “ 𝐴)) = 𝒫
(𝑅1‘suc ∪ (𝐹 “ 𝐴)) |
52 | 51 | eleq2i 2830 |
. . 3
⊢ (𝐴 ∈
(𝑅1‘suc suc ∪ (𝐹 “ 𝐴)) ↔ 𝐴 ∈ 𝒫
(𝑅1‘suc ∪ (𝐹 “ 𝐴))) |
53 | 21 | elpw 4534 |
. . 3
⊢ (𝐴 ∈ 𝒫
(𝑅1‘suc ∪ (𝐹 “ 𝐴)) ↔ 𝐴 ⊆ (𝑅1‘suc
∪ (𝐹 “ 𝐴))) |
54 | | dfss3 3905 |
. . 3
⊢ (𝐴 ⊆
(𝑅1‘suc ∪ (𝐹 “ 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑅1‘suc
∪ (𝐹 “ 𝐴))) |
55 | 52, 53, 54 | 3bitri 296 |
. 2
⊢ (𝐴 ∈
(𝑅1‘suc suc ∪ (𝐹 “ 𝐴)) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝑅1‘suc
∪ (𝐹 “ 𝐴))) |
56 | 49, 55 | sylibr 233 |
1
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝐴 ∈ (𝑅1‘suc suc
∪ (𝐹 “ 𝐴))) |