MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfx2 Structured version   Visualization version   GIF version

Theorem pfx2 14656
Description: A prefix of length two. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
pfx2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)

Proof of Theorem pfx2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12248 . . . 4 2 ∈ ℕ0
21a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ ℕ0)
3 lencl 14232 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
43adantr 481 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
5 simpr 485 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
6 elfz2nn0 13344 . . 3 (2 ∈ (0...(♯‘𝑊)) ↔ (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)))
72, 4, 5, 6syl3anbrc 1342 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ (0...(♯‘𝑊)))
8 pfxlen 14392 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 2)) = 2)
9 s2len 14598 . . . . . . 7 (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) = 2
109eqcomi 2749 . . . . . 6 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩)
1110a1i 11 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩))
12 2nn 12044 . . . . . . . . . 10 2 ∈ ℕ
13 lbfzo0 13423 . . . . . . . . . 10 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1412, 13mpbir 230 . . . . . . . . 9 0 ∈ (0..^2)
15 pfxfv 14391 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0..^2)) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
1614, 15mp3an3 1449 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
1716adantr 481 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
18 fvex 6782 . . . . . . . 8 (𝑊‘0) ∈ V
19 s2fv0 14596 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0))
2018, 19ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0)
2117, 20eqtr4di 2798 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
22 1nn0 12247 . . . . . . . . . 10 1 ∈ ℕ0
23 1lt2 12142 . . . . . . . . . 10 1 < 2
24 elfzo0 13424 . . . . . . . . . 10 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
2522, 12, 23, 24mpbir3an 1340 . . . . . . . . 9 1 ∈ (0..^2)
26 pfxfv 14391 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊)) ∧ 1 ∈ (0..^2)) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
2725, 26mp3an3 1449 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
28 fvex 6782 . . . . . . . . 9 (𝑊‘1) ∈ V
29 s2fv1 14597 . . . . . . . . 9 ((𝑊‘1) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1))
3028, 29ax-mp 5 . . . . . . . 8 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1)
3127, 30eqtr4di 2798 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3231adantr 481 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
33 0nn0 12246 . . . . . . 7 0 ∈ ℕ0
34 fveq2 6769 . . . . . . . . 9 (𝑖 = 0 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘0))
35 fveq2 6769 . . . . . . . . 9 (𝑖 = 0 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
3634, 35eqeq12d 2756 . . . . . . . 8 (𝑖 = 0 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0)))
37 fveq2 6769 . . . . . . . . 9 (𝑖 = 1 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘1))
38 fveq2 6769 . . . . . . . . 9 (𝑖 = 1 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3937, 38eqeq12d 2756 . . . . . . . 8 (𝑖 = 1 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4036, 39ralprg 4636 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))))
4133, 22, 40mp2an 689 . . . . . 6 (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4221, 32, 41sylanbrc 583 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))
43 eqeq1 2744 . . . . . . 7 ((♯‘(𝑊 prefix 2)) = 2 → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ↔ 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩)))
44 oveq2 7277 . . . . . . . . 9 ((♯‘(𝑊 prefix 2)) = 2 → (0..^(♯‘(𝑊 prefix 2))) = (0..^2))
45 fzo0to2pr 13468 . . . . . . . . 9 (0..^2) = {0, 1}
4644, 45eqtrdi 2796 . . . . . . . 8 ((♯‘(𝑊 prefix 2)) = 2 → (0..^(♯‘(𝑊 prefix 2))) = {0, 1})
4746raleqdv 3347 . . . . . . 7 ((♯‘(𝑊 prefix 2)) = 2 → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
4843, 47anbi12d 631 . . . . . 6 ((♯‘(𝑊 prefix 2)) = 2 → (((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
4948adantl 482 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → (((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5011, 42, 49mpbir2and 710 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
518, 50mpdan 684 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
52 pfxcl 14386 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 2) ∈ Word 𝑉)
53 s2cli 14589 . . . . 5 ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word V
54 eqwrd 14256 . . . . 5 (((𝑊 prefix 2) ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word V) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5552, 53, 54sylancl 586 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5655adantr 481 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5751, 56mpbird 256 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
587, 57syldan 591 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  Vcvv 3431  {cpr 4569   class class class wbr 5079  cfv 6431  (class class class)co 7269  0cc0 10870  1c1 10871   < clt 11008  cle 11009  cn 11971  2c2 12026  0cn0 12231  ...cfz 13236  ..^cfzo 13379  chash 14040  Word cword 14213   prefix cpfx 14379  ⟨“cs2 14550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-n0 12232  df-z 12318  df-uz 12580  df-fz 13237  df-fzo 13380  df-hash 14041  df-word 14214  df-concat 14270  df-s1 14297  df-substr 14350  df-pfx 14380  df-s2 14557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator