MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfx2 Structured version   Visualization version   GIF version

Theorem pfx2 14300
Description: A prefix of length two. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
pfx2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)

Proof of Theorem pfx2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn0 11902 . . . 4 2 ∈ ℕ0
21a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ ℕ0)
3 lencl 13876 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
43adantr 484 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
5 simpr 488 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
6 elfz2nn0 12993 . . 3 (2 ∈ (0...(♯‘𝑊)) ↔ (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)))
72, 4, 5, 6syl3anbrc 1340 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ (0...(♯‘𝑊)))
8 pfxlen 14036 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 2)) = 2)
9 s2len 14242 . . . . . . 7 (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) = 2
109eqcomi 2807 . . . . . 6 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩)
1110a1i 11 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩))
12 2nn 11698 . . . . . . . . . 10 2 ∈ ℕ
13 lbfzo0 13072 . . . . . . . . . 10 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1412, 13mpbir 234 . . . . . . . . 9 0 ∈ (0..^2)
15 pfxfv 14035 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0..^2)) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
1614, 15mp3an3 1447 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
1716adantr 484 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
18 fvex 6658 . . . . . . . 8 (𝑊‘0) ∈ V
19 s2fv0 14240 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0))
2018, 19ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0)
2117, 20eqtr4di 2851 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
22 1nn0 11901 . . . . . . . . . 10 1 ∈ ℕ0
23 1lt2 11796 . . . . . . . . . 10 1 < 2
24 elfzo0 13073 . . . . . . . . . 10 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
2522, 12, 23, 24mpbir3an 1338 . . . . . . . . 9 1 ∈ (0..^2)
26 pfxfv 14035 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊)) ∧ 1 ∈ (0..^2)) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
2725, 26mp3an3 1447 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
28 fvex 6658 . . . . . . . . 9 (𝑊‘1) ∈ V
29 s2fv1 14241 . . . . . . . . 9 ((𝑊‘1) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1))
3028, 29ax-mp 5 . . . . . . . 8 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1)
3127, 30eqtr4di 2851 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3231adantr 484 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
33 0nn0 11900 . . . . . . 7 0 ∈ ℕ0
34 fveq2 6645 . . . . . . . . 9 (𝑖 = 0 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘0))
35 fveq2 6645 . . . . . . . . 9 (𝑖 = 0 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
3634, 35eqeq12d 2814 . . . . . . . 8 (𝑖 = 0 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0)))
37 fveq2 6645 . . . . . . . . 9 (𝑖 = 1 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘1))
38 fveq2 6645 . . . . . . . . 9 (𝑖 = 1 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3937, 38eqeq12d 2814 . . . . . . . 8 (𝑖 = 1 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4036, 39ralprg 4592 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))))
4133, 22, 40mp2an 691 . . . . . 6 (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4221, 32, 41sylanbrc 586 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))
43 eqeq1 2802 . . . . . . 7 ((♯‘(𝑊 prefix 2)) = 2 → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ↔ 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩)))
44 oveq2 7143 . . . . . . . . 9 ((♯‘(𝑊 prefix 2)) = 2 → (0..^(♯‘(𝑊 prefix 2))) = (0..^2))
45 fzo0to2pr 13117 . . . . . . . . 9 (0..^2) = {0, 1}
4644, 45eqtrdi 2849 . . . . . . . 8 ((♯‘(𝑊 prefix 2)) = 2 → (0..^(♯‘(𝑊 prefix 2))) = {0, 1})
4746raleqdv 3364 . . . . . . 7 ((♯‘(𝑊 prefix 2)) = 2 → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
4843, 47anbi12d 633 . . . . . 6 ((♯‘(𝑊 prefix 2)) = 2 → (((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
4948adantl 485 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → (((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5011, 42, 49mpbir2and 712 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
518, 50mpdan 686 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
52 pfxcl 14030 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 2) ∈ Word 𝑉)
53 s2cli 14233 . . . . 5 ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word V
54 eqwrd 13900 . . . . 5 (((𝑊 prefix 2) ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word V) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5552, 53, 54sylancl 589 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5655adantr 484 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5751, 56mpbird 260 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
587, 57syldan 594 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  {cpr 4527   class class class wbr 5030  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cn 11625  2c2 11680  0cn0 11885  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   prefix cpfx 14023  ⟨“cs2 14194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-s2 14201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator