MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfx2 Structured version   Visualization version   GIF version

Theorem pfx2 14898
Description: A prefix of length two. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
pfx2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)

Proof of Theorem pfx2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12489 . . . 4 2 ∈ ℕ0
21a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ ℕ0)
3 lencl 14483 . . . 4 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
43adantr 482 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
5 simpr 486 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
6 elfz2nn0 13592 . . 3 (2 ∈ (0...(♯‘𝑊)) ↔ (2 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)))
72, 4, 5, 6syl3anbrc 1344 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ (0...(♯‘𝑊)))
8 pfxlen 14633 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 2)) = 2)
9 s2len 14840 . . . . . . 7 (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) = 2
109eqcomi 2742 . . . . . 6 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩)
1110a1i 11 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩))
12 2nn 12285 . . . . . . . . . 10 2 ∈ ℕ
13 lbfzo0 13672 . . . . . . . . . 10 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
1412, 13mpbir 230 . . . . . . . . 9 0 ∈ (0..^2)
15 pfxfv 14632 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊)) ∧ 0 ∈ (0..^2)) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
1614, 15mp3an3 1451 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
1716adantr 482 . . . . . . 7 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (𝑊‘0))
18 fvex 6905 . . . . . . . 8 (𝑊‘0) ∈ V
19 s2fv0 14838 . . . . . . . 8 ((𝑊‘0) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0))
2018, 19ax-mp 5 . . . . . . 7 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) = (𝑊‘0)
2117, 20eqtr4di 2791 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
22 1nn0 12488 . . . . . . . . . 10 1 ∈ ℕ0
23 1lt2 12383 . . . . . . . . . 10 1 < 2
24 elfzo0 13673 . . . . . . . . . 10 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
2522, 12, 23, 24mpbir3an 1342 . . . . . . . . 9 1 ∈ (0..^2)
26 pfxfv 14632 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊)) ∧ 1 ∈ (0..^2)) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
2725, 26mp3an3 1451 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘1) = (𝑊‘1))
28 fvex 6905 . . . . . . . . 9 (𝑊‘1) ∈ V
29 s2fv1 14839 . . . . . . . . 9 ((𝑊‘1) ∈ V → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1))
3028, 29ax-mp 5 . . . . . . . 8 (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1) = (𝑊‘1)
3127, 30eqtr4di 2791 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3231adantr 482 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
33 0nn0 12487 . . . . . . 7 0 ∈ ℕ0
34 fveq2 6892 . . . . . . . . 9 (𝑖 = 0 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘0))
35 fveq2 6892 . . . . . . . . 9 (𝑖 = 0 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0))
3634, 35eqeq12d 2749 . . . . . . . 8 (𝑖 = 0 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0)))
37 fveq2 6892 . . . . . . . . 9 (𝑖 = 1 → ((𝑊 prefix 2)‘𝑖) = ((𝑊 prefix 2)‘1))
38 fveq2 6892 . . . . . . . . 9 (𝑖 = 1 → (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))
3937, 38eqeq12d 2749 . . . . . . . 8 (𝑖 = 1 → (((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4036, 39ralprg 4699 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1))))
4133, 22, 40mp2an 691 . . . . . 6 (∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ (((𝑊 prefix 2)‘0) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘0) ∧ ((𝑊 prefix 2)‘1) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘1)))
4221, 32, 41sylanbrc 584 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))
43 eqeq1 2737 . . . . . . 7 ((♯‘(𝑊 prefix 2)) = 2 → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ↔ 2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩)))
44 oveq2 7417 . . . . . . . . 9 ((♯‘(𝑊 prefix 2)) = 2 → (0..^(♯‘(𝑊 prefix 2))) = (0..^2))
45 fzo0to2pr 13717 . . . . . . . . 9 (0..^2) = {0, 1}
4644, 45eqtrdi 2789 . . . . . . . 8 ((♯‘(𝑊 prefix 2)) = 2 → (0..^(♯‘(𝑊 prefix 2))) = {0, 1})
4746raleqdv 3326 . . . . . . 7 ((♯‘(𝑊 prefix 2)) = 2 → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
4843, 47anbi12d 632 . . . . . 6 ((♯‘(𝑊 prefix 2)) = 2 → (((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
4948adantl 483 . . . . 5 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → (((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)) ↔ (2 = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ {0, 1} ((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5011, 42, 49mpbir2and 712 . . . 4 (((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) ∧ (♯‘(𝑊 prefix 2)) = 2) → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
518, 50mpdan 686 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖)))
52 pfxcl 14627 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 2) ∈ Word 𝑉)
53 s2cli 14831 . . . . 5 ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word V
54 eqwrd 14507 . . . . 5 (((𝑊 prefix 2) ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)(𝑊‘1)”⟩ ∈ Word V) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5552, 53, 54sylancl 587 . . . 4 (𝑊 ∈ Word 𝑉 → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5655adantr 482 . . 3 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩ ↔ ((♯‘(𝑊 prefix 2)) = (♯‘⟨“(𝑊‘0)(𝑊‘1)”⟩) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 2)))((𝑊 prefix 2)‘𝑖) = (⟨“(𝑊‘0)(𝑊‘1)”⟩‘𝑖))))
5751, 56mpbird 257 . 2 ((𝑊 ∈ Word 𝑉 ∧ 2 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
587, 57syldan 592 1 ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix 2) = ⟨“(𝑊‘0)(𝑊‘1)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  {cpr 4631   class class class wbr 5149  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   < clt 11248  cle 11249  cn 12212  2c2 12267  0cn0 12472  ...cfz 13484  ..^cfzo 13627  chash 14290  Word cword 14464   prefix cpfx 14620  ⟨“cs2 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-concat 14521  df-s1 14546  df-substr 14591  df-pfx 14621  df-s2 14799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator