![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfpr | Structured version Visualization version GIF version |
Description: The value of the lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmfpr | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11209 | . . . . . 6 ⊢ 0 ∈ V | |
2 | 1 | elpr 4646 | . . . . 5 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (0 = 𝑀 ∨ 0 = 𝑁)) |
3 | eqcom 2733 | . . . . . 6 ⊢ (0 = 𝑀 ↔ 𝑀 = 0) | |
4 | eqcom 2733 | . . . . . 6 ⊢ (0 = 𝑁 ↔ 𝑁 = 0) | |
5 | 3, 4 | orbi12i 911 | . . . . 5 ⊢ ((0 = 𝑀 ∨ 0 = 𝑁) ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
6 | 2, 5 | bitri 275 | . . . 4 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
8 | breq1 5144 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
9 | breq1 5144 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝑚 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
10 | 8, 9 | ralprg 4693 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛 ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
11 | 10 | rabbidv 3434 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
12 | 11 | infeq1d 9471 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
13 | 7, 12 | ifbieq2d 4549 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
14 | prssi 4819 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ) | |
15 | prfi 9321 | . . 3 ⊢ {𝑀, 𝑁} ∈ Fin | |
16 | lcmfval 16563 | . . 3 ⊢ (({𝑀, 𝑁} ⊆ ℤ ∧ {𝑀, 𝑁} ∈ Fin) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) | |
17 | 14, 15, 16 | sylancl 585 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) |
18 | lcmval 16534 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | |
19 | 13, 17, 18 | 3eqtr4d 2776 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∀wral 3055 {crab 3426 ⊆ wss 3943 ifcif 4523 {cpr 4625 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 Fincfn 8938 infcinf 9435 ℝcr 11108 0cc0 11109 < clt 11249 ℕcn 12213 ℤcz 12559 ∥ cdvds 16202 lcm clcm 16530 lcmclcmf 16531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fzo 13631 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-prod 15854 df-dvds 16203 df-lcm 16532 df-lcmf 16533 |
This theorem is referenced by: lcmfsn 16577 |
Copyright terms: Public domain | W3C validator |