Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfpr Structured version   Visualization version   GIF version

Theorem lcmfpr 15960
 Description: The value of the lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmfpr ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁))

Proof of Theorem lcmfpr
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 10624 . . . . . 6 0 ∈ V
21elpr 4562 . . . . 5 (0 ∈ {𝑀, 𝑁} ↔ (0 = 𝑀 ∨ 0 = 𝑁))
3 eqcom 2829 . . . . . 6 (0 = 𝑀𝑀 = 0)
4 eqcom 2829 . . . . . 6 (0 = 𝑁𝑁 = 0)
53, 4orbi12i 912 . . . . 5 ((0 = 𝑀 ∨ 0 = 𝑁) ↔ (𝑀 = 0 ∨ 𝑁 = 0))
62, 5bitri 278 . . . 4 (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0))
76a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0)))
8 breq1 5045 . . . . . 6 (𝑚 = 𝑀 → (𝑚𝑛𝑀𝑛))
9 breq1 5045 . . . . . 6 (𝑚 = 𝑁 → (𝑚𝑛𝑁𝑛))
108, 9ralprg 4606 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑚 ∈ {𝑀, 𝑁}𝑚𝑛 ↔ (𝑀𝑛𝑁𝑛)))
1110rabbidv 3455 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚𝑛} = {𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)})
1211infeq1d 8929 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < ))
137, 12ifbieq2d 4464 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚𝑛}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
14 prssi 4727 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ)
15 prfi 8781 . . 3 {𝑀, 𝑁} ∈ Fin
16 lcmfval 15954 . . 3 (({𝑀, 𝑁} ⊆ ℤ ∧ {𝑀, 𝑁} ∈ Fin) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚𝑛}, ℝ, < )))
1714, 15, 16sylancl 589 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚𝑛}, ℝ, < )))
18 lcmval 15925 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀𝑛𝑁𝑛)}, ℝ, < )))
1913, 17, 183eqtr4d 2867 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2114  ∀wral 3130  {crab 3134   ⊆ wss 3908  ifcif 4439  {cpr 4541   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  Fincfn 8496  infcinf 8893  ℝcr 10525  0cc0 10526   < clt 10664  ℕcn 11625  ℤcz 11969   ∥ cdvds 15598   lcm clcm 15921  lcmclcmf 15922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-prod 15251  df-dvds 15599  df-lcm 15923  df-lcmf 15924 This theorem is referenced by:  lcmfsn  15968
 Copyright terms: Public domain W3C validator