![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfpr | Structured version Visualization version GIF version |
Description: The value of the lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmfpr | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11207 | . . . . . 6 ⊢ 0 ∈ V | |
2 | 1 | elpr 4651 | . . . . 5 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (0 = 𝑀 ∨ 0 = 𝑁)) |
3 | eqcom 2739 | . . . . . 6 ⊢ (0 = 𝑀 ↔ 𝑀 = 0) | |
4 | eqcom 2739 | . . . . . 6 ⊢ (0 = 𝑁 ↔ 𝑁 = 0) | |
5 | 3, 4 | orbi12i 913 | . . . . 5 ⊢ ((0 = 𝑀 ∨ 0 = 𝑁) ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
6 | 2, 5 | bitri 274 | . . . 4 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
8 | breq1 5151 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
9 | breq1 5151 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝑚 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
10 | 8, 9 | ralprg 4698 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛 ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
11 | 10 | rabbidv 3440 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
12 | 11 | infeq1d 9471 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
13 | 7, 12 | ifbieq2d 4554 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
14 | prssi 4824 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ) | |
15 | prfi 9321 | . . 3 ⊢ {𝑀, 𝑁} ∈ Fin | |
16 | lcmfval 16557 | . . 3 ⊢ (({𝑀, 𝑁} ⊆ ℤ ∧ {𝑀, 𝑁} ∈ Fin) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) | |
17 | 14, 15, 16 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) |
18 | lcmval 16528 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | |
19 | 13, 17, 18 | 3eqtr4d 2782 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 ⊆ wss 3948 ifcif 4528 {cpr 4630 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 Fincfn 8938 infcinf 9435 ℝcr 11108 0cc0 11109 < clt 11247 ℕcn 12211 ℤcz 12557 ∥ cdvds 16196 lcm clcm 16524 lcmclcmf 16525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-prod 15849 df-dvds 16197 df-lcm 16526 df-lcmf 16527 |
This theorem is referenced by: lcmfsn 16571 |
Copyright terms: Public domain | W3C validator |