![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfpr | Structured version Visualization version GIF version |
Description: The value of the lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
Ref | Expression |
---|---|
lcmfpr | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11239 | . . . . . 6 ⊢ 0 ∈ V | |
2 | 1 | elpr 4652 | . . . . 5 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (0 = 𝑀 ∨ 0 = 𝑁)) |
3 | eqcom 2735 | . . . . . 6 ⊢ (0 = 𝑀 ↔ 𝑀 = 0) | |
4 | eqcom 2735 | . . . . . 6 ⊢ (0 = 𝑁 ↔ 𝑁 = 0) | |
5 | 3, 4 | orbi12i 913 | . . . . 5 ⊢ ((0 = 𝑀 ∨ 0 = 𝑁) ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
6 | 2, 5 | bitri 275 | . . . 4 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
8 | breq1 5151 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
9 | breq1 5151 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝑚 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
10 | 8, 9 | ralprg 4699 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛 ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
11 | 10 | rabbidv 3437 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
12 | 11 | infeq1d 9501 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
13 | 7, 12 | ifbieq2d 4555 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
14 | prssi 4825 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ) | |
15 | prfi 9347 | . . 3 ⊢ {𝑀, 𝑁} ∈ Fin | |
16 | lcmfval 16592 | . . 3 ⊢ (({𝑀, 𝑁} ⊆ ℤ ∧ {𝑀, 𝑁} ∈ Fin) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) | |
17 | 14, 15, 16 | sylancl 585 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) |
18 | lcmval 16563 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | |
19 | 13, 17, 18 | 3eqtr4d 2778 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 ⊆ wss 3947 ifcif 4529 {cpr 4631 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Fincfn 8964 infcinf 9465 ℝcr 11138 0cc0 11139 < clt 11279 ℕcn 12243 ℤcz 12589 ∥ cdvds 16231 lcm clcm 16559 lcmclcmf 16560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-prod 15883 df-dvds 16232 df-lcm 16561 df-lcmf 16562 |
This theorem is referenced by: lcmfsn 16606 |
Copyright terms: Public domain | W3C validator |