| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmfpr | Structured version Visualization version GIF version | ||
| Description: The value of the lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020.) (Proof shortened by AV, 16-Sep-2020.) |
| Ref | Expression |
|---|---|
| lcmfpr | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11175 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1 | elpr 4617 | . . . . 5 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (0 = 𝑀 ∨ 0 = 𝑁)) |
| 3 | eqcom 2737 | . . . . . 6 ⊢ (0 = 𝑀 ↔ 𝑀 = 0) | |
| 4 | eqcom 2737 | . . . . . 6 ⊢ (0 = 𝑁 ↔ 𝑁 = 0) | |
| 5 | 3, 4 | orbi12i 914 | . . . . 5 ⊢ ((0 = 𝑀 ∨ 0 = 𝑁) ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
| 6 | 2, 5 | bitri 275 | . . . 4 ⊢ (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0)) |
| 7 | 6 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ {𝑀, 𝑁} ↔ (𝑀 = 0 ∨ 𝑁 = 0))) |
| 8 | breq1 5113 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛)) | |
| 9 | breq1 5113 | . . . . . 6 ⊢ (𝑚 = 𝑁 → (𝑚 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛)) | |
| 10 | 8, 9 | ralprg 4663 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛 ↔ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛))) |
| 11 | 10 | rabbidv 3416 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛} = {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) |
| 12 | 11 | infeq1d 9436 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < )) |
| 13 | 7, 12 | ifbieq2d 4518 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < )) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) |
| 14 | prssi 4788 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ) | |
| 15 | prfi 9281 | . . 3 ⊢ {𝑀, 𝑁} ∈ Fin | |
| 16 | lcmfval 16598 | . . 3 ⊢ (({𝑀, 𝑁} ⊆ ℤ ∧ {𝑀, 𝑁} ∈ Fin) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) | |
| 17 | 14, 15, 16 | sylancl 586 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = if(0 ∈ {𝑀, 𝑁}, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚 ∈ {𝑀, 𝑁}𝑚 ∥ 𝑛}, ℝ, < ))) |
| 18 | lcmval 16569 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) = if((𝑀 = 0 ∨ 𝑁 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}, ℝ, < ))) | |
| 19 | 13, 17, 18 | 3eqtr4d 2775 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (lcm‘{𝑀, 𝑁}) = (𝑀 lcm 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3917 ifcif 4491 {cpr 4594 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 infcinf 9399 ℝcr 11074 0cc0 11075 < clt 11215 ℕcn 12193 ℤcz 12536 ∥ cdvds 16229 lcm clcm 16565 lcmclcmf 16566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 df-dvds 16230 df-lcm 16567 df-lcmf 16568 |
| This theorem is referenced by: lcmfsn 16612 |
| Copyright terms: Public domain | W3C validator |