MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumpr Structured version   Visualization version   GIF version

Theorem sumpr 15714
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Hypotheses
Ref Expression
sumpr.1 (𝑘 = 𝐴𝐶 = 𝐷)
sumpr.2 (𝑘 = 𝐵𝐶 = 𝐸)
sumpr.3 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
sumpr.4 (𝜑 → (𝐴𝑉𝐵𝑊))
sumpr.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
sumpr (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumpr
StepHypRef Expression
1 sumpr.5 . . . 4 (𝜑𝐴𝐵)
2 disjsn2 4676 . . . 4 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
31, 2syl 17 . . 3 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
4 df-pr 4592 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
54a1i 11 . . 3 (𝜑 → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}))
6 prfi 9274 . . . 4 {𝐴, 𝐵} ∈ Fin
76a1i 11 . . 3 (𝜑 → {𝐴, 𝐵} ∈ Fin)
8 sumpr.3 . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
9 sumpr.4 . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊))
10 sumpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐶 = 𝐷)
1110eleq1d 2813 . . . . . . 7 (𝑘 = 𝐴 → (𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ))
12 sumpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐶 = 𝐸)
1312eleq1d 2813 . . . . . . 7 (𝑘 = 𝐵 → (𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ))
1411, 13ralprg 4660 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)))
159, 14syl 17 . . . . 5 (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ ↔ (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)))
168, 15mpbird 257 . . . 4 (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵}𝐶 ∈ ℂ)
1716r19.21bi 3229 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ ℂ)
183, 5, 7, 17fsumsplit 15707 . 2 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶))
199simpld 494 . . . 4 (𝜑𝐴𝑉)
208simpld 494 . . . 4 (𝜑𝐷 ∈ ℂ)
2110sumsn 15712 . . . 4 ((𝐴𝑉𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷)
2219, 20, 21syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ {𝐴}𝐶 = 𝐷)
239simprd 495 . . . 4 (𝜑𝐵𝑊)
248simprd 495 . . . 4 (𝜑𝐸 ∈ ℂ)
2512sumsn 15712 . . . 4 ((𝐵𝑊𝐸 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸)
2623, 24, 25syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐸)
2722, 26oveq12d 7405 . 2 (𝜑 → (Σ𝑘 ∈ {𝐴}𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (𝐷 + 𝐸))
2818, 27eqtrd 2764 1 (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cun 3912  cin 3913  c0 4296  {csn 4589  {cpr 4591  (class class class)co 7387  Fincfn 8918  cc 11066   + caddc 11071  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  sumtp  15715  ehl2eudis  25322  sge0pr  46392  nnsum3primes4  47789  nnsum3primesgbe  47793
  Copyright terms: Public domain W3C validator