| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsr | Structured version Visualization version GIF version | ||
| Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
| dvdsr.3 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvdsr | ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.2 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
| 2 | 1 | reldvdsr 20276 | . . 3 ⊢ Rel ∥ |
| 3 | 2 | brrelex12i 5671 | . 2 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 4 | elex 3457 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
| 5 | id 22 | . . . . 5 ⊢ ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌) | |
| 6 | ovex 7379 | . . . . 5 ⊢ (𝑧 · 𝑋) ∈ V | |
| 7 | 5, 6 | eqeltrrdi 2840 | . . . 4 ⊢ ((𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
| 8 | 7 | rexlimivw 3129 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
| 9 | 4, 8 | anim12i 613 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 10 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 11 | 10 | eleq1d 2816 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) |
| 12 | 10 | oveq2d 7362 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋)) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 14 | 12, 13 | eqeq12d 2747 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌)) |
| 15 | 14 | rexbidv 3156 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| 16 | 11, 15 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
| 17 | dvdsr.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 18 | dvdsr.3 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 19 | 17, 1, 18 | dvdsrval 20277 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} |
| 20 | 16, 19 | brabga 5474 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
| 21 | 3, 9, 20 | pm5.21nii 378 | 1 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 .rcmulr 17159 ∥rcdsr 20270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-dvdsr 20273 |
| This theorem is referenced by: dvdsr2 20279 dvdsrmul 20280 dvdsrcl 20281 dvdsrcl2 20282 dvdsrtr 20284 dvdsrmul1 20285 opprunit 20293 crngunit 20294 rhmdvdsr 20421 subrgdvds 20499 isunit2 33202 dvdsruassoi 33344 dvdsruasso 33345 dvdsrspss 33347 rprmasso2 33486 unitmulrprm 33488 rprmirredlem 33490 1arithufdlem3 33506 rhmqusspan 42217 unitscyglem5 42231 |
| Copyright terms: Public domain | W3C validator |