Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsr | Structured version Visualization version GIF version |
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
dvdsr.3 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dvdsr | ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsr.2 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
2 | 1 | reldvdsr 19801 | . . 3 ⊢ Rel ∥ |
3 | 2 | brrelex12i 5633 | . 2 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
4 | elex 3440 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
5 | id 22 | . . . . 5 ⊢ ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌) | |
6 | ovex 7288 | . . . . 5 ⊢ (𝑧 · 𝑋) ∈ V | |
7 | 5, 6 | eqeltrrdi 2848 | . . . 4 ⊢ ((𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
8 | 7 | rexlimivw 3210 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
9 | 4, 8 | anim12i 612 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
10 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
11 | 10 | eleq1d 2823 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) |
12 | 10 | oveq2d 7271 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋)) |
13 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
14 | 12, 13 | eqeq12d 2754 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌)) |
15 | 14 | rexbidv 3225 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
16 | 11, 15 | anbi12d 630 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
17 | dvdsr.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
18 | dvdsr.3 | . . . 4 ⊢ · = (.r‘𝑅) | |
19 | 17, 1, 18 | dvdsrval 19802 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} |
20 | 16, 19 | brabga 5440 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
21 | 3, 9, 20 | pm5.21nii 379 | 1 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 ∥rcdsr 19795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-dvdsr 19798 |
This theorem is referenced by: dvdsr2 19804 dvdsrmul 19805 dvdsrcl 19806 dvdsrcl2 19807 dvdsrtr 19809 dvdsrmul1 19810 opprunit 19818 crngunit 19819 subrgdvds 19953 rhmdvdsr 31419 |
Copyright terms: Public domain | W3C validator |