| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsr | Structured version Visualization version GIF version | ||
| Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| Ref | Expression |
|---|---|
| dvdsr.1 | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsr.2 | ⊢ ∥ = (∥r‘𝑅) |
| dvdsr.3 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvdsr | ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.2 | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
| 2 | 1 | reldvdsr 20318 | . . 3 ⊢ Rel ∥ |
| 3 | 2 | brrelex12i 5709 | . 2 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 4 | elex 3480 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ V) | |
| 5 | id 22 | . . . . 5 ⊢ ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌) | |
| 6 | ovex 7436 | . . . . 5 ⊢ (𝑧 · 𝑋) ∈ V | |
| 7 | 5, 6 | eqeltrrdi 2843 | . . . 4 ⊢ ((𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
| 8 | 7 | rexlimivw 3137 | . . 3 ⊢ (∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌 → 𝑌 ∈ V) |
| 9 | 4, 8 | anim12i 613 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
| 10 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 11 | 10 | eleq1d 2819 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) |
| 12 | 10 | oveq2d 7419 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋)) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 14 | 12, 13 | eqeq12d 2751 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌)) |
| 15 | 14 | rexbidv 3164 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| 16 | 11, 15 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
| 17 | dvdsr.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 18 | dvdsr.3 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 19 | 17, 1, 18 | dvdsrval 20319 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)} |
| 20 | 16, 19 | brabga 5509 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
| 21 | 3, 9, 20 | pm5.21nii 378 | 1 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 .rcmulr 17270 ∥rcdsr 20312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-dvdsr 20315 |
| This theorem is referenced by: dvdsr2 20321 dvdsrmul 20322 dvdsrcl 20323 dvdsrcl2 20324 dvdsrtr 20326 dvdsrmul1 20327 opprunit 20335 crngunit 20336 rhmdvdsr 20466 subrgdvds 20544 isunit2 33181 dvdsruassoi 33345 dvdsruasso 33346 dvdsrspss 33348 rprmasso2 33487 unitmulrprm 33489 rprmirredlem 33491 1arithufdlem3 33507 rhmqusspan 42144 unitscyglem5 42158 |
| Copyright terms: Public domain | W3C validator |