Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr Structured version   Visualization version   GIF version

Theorem dvdsr 19390
 Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsr (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . . 4 = (∥r𝑅)
21reldvdsr 19388 . . 3 Rel
32brrelex12i 5584 . 2 (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
4 elex 3487 . . 3 (𝑋𝐵𝑋 ∈ V)
5 id 22 . . . . 5 ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌)
6 ovex 7173 . . . . 5 (𝑧 · 𝑋) ∈ V
75, 6eqeltrrdi 2923 . . . 4 ((𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
87rexlimivw 3268 . . 3 (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
94, 8anim12i 615 . 2 ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
10 simpl 486 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1110eleq1d 2898 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
1210oveq2d 7156 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
13 simpr 488 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1412, 13eqeq12d 2838 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
1514rexbidv 3283 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
1611, 15anbi12d 633 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
17 dvdsr.1 . . . 4 𝐵 = (Base‘𝑅)
18 dvdsr.3 . . . 4 · = (.r𝑅)
1917, 1, 18dvdsrval 19389 . . 3 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
2016, 19brabga 5398 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
213, 9, 20pm5.21nii 383 1 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114  ∃wrex 3131  Vcvv 3469   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  .rcmulr 16557  ∥rcdsr 19382 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-dvdsr 19385 This theorem is referenced by:  dvdsr2  19391  dvdsrmul  19392  dvdsrcl  19393  dvdsrcl2  19394  dvdsrtr  19396  dvdsrmul1  19397  opprunit  19405  crngunit  19406  subrgdvds  19540  rhmdvdsr  30923
 Copyright terms: Public domain W3C validator