MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr Structured version   Visualization version   GIF version

Theorem dvdsr 19888
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
dvdsr.3 · = (.r𝑅)
Assertion
Ref Expression
dvdsr (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Distinct variable groups:   𝑧,𝐵   𝑧,𝑋   𝑧,𝑌   𝑧,𝑅   𝑧, ·
Allowed substitution hint:   (𝑧)

Proof of Theorem dvdsr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.2 . . . 4 = (∥r𝑅)
21reldvdsr 19886 . . 3 Rel
32brrelex12i 5642 . 2 (𝑋 𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
4 elex 3450 . . 3 (𝑋𝐵𝑋 ∈ V)
5 id 22 . . . . 5 ((𝑧 · 𝑋) = 𝑌 → (𝑧 · 𝑋) = 𝑌)
6 ovex 7308 . . . . 5 (𝑧 · 𝑋) ∈ V
75, 6eqeltrrdi 2848 . . . 4 ((𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
87rexlimivw 3211 . . 3 (∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌𝑌 ∈ V)
94, 8anim12i 613 . 2 ((𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
10 simpl 483 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1110eleq1d 2823 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐵𝑋𝐵))
1210oveq2d 7291 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 · 𝑥) = (𝑧 · 𝑋))
13 simpr 485 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1412, 13eqeq12d 2754 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 · 𝑥) = 𝑦 ↔ (𝑧 · 𝑋) = 𝑌))
1514rexbidv 3226 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
1611, 15anbi12d 631 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦) ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
17 dvdsr.1 . . . 4 𝐵 = (Base‘𝑅)
18 dvdsr.3 . . . 4 · = (.r𝑅)
1917, 1, 18dvdsrval 19887 . . 3 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)}
2016, 19brabga 5447 . 2 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
213, 9, 20pm5.21nii 380 1 (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  rcdsr 19880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-dvdsr 19883
This theorem is referenced by:  dvdsr2  19889  dvdsrmul  19890  dvdsrcl  19891  dvdsrcl2  19892  dvdsrtr  19894  dvdsrmul1  19895  opprunit  19903  crngunit  19904  subrgdvds  20038  rhmdvdsr  31517
  Copyright terms: Public domain W3C validator