Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib2dim Structured version   Visualization version   GIF version

Theorem dib2dim 38538
 Description: Extend dia2dim 38372 to partial isomorphism B. (Contributed by NM, 22-Sep-2014.)
Hypotheses
Ref Expression
dib2dim.l = (le‘𝐾)
dib2dim.j = (join‘𝐾)
dib2dim.a 𝐴 = (Atoms‘𝐾)
dib2dim.h 𝐻 = (LHyp‘𝐾)
dib2dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dib2dim.s = (LSSum‘𝑈)
dib2dim.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
dib2dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dib2dim.p (𝜑 → (𝑃𝐴𝑃 𝑊))
dib2dim.q (𝜑 → (𝑄𝐴𝑄 𝑊))
Assertion
Ref Expression
dib2dim (𝜑 → (𝐼‘(𝑃 𝑄)) ⊆ ((𝐼𝑃) (𝐼𝑄)))

Proof of Theorem dib2dim
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dib2dim.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dib2dim.h . . . 4 𝐻 = (LHyp‘𝐾)
3 dib2dim.i . . . 4 𝐼 = ((DIsoB‘𝐾)‘𝑊)
42, 3dibvalrel 38458 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → Rel (𝐼‘(𝑃 𝑄)))
51, 4syl 17 . 2 (𝜑 → Rel (𝐼‘(𝑃 𝑄)))
6 dib2dim.l . . . . . 6 = (le‘𝐾)
7 dib2dim.j . . . . . 6 = (join‘𝐾)
8 dib2dim.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 eqid 2801 . . . . . 6 ((DVecA‘𝐾)‘𝑊) = ((DVecA‘𝐾)‘𝑊)
10 eqid 2801 . . . . . 6 (LSSum‘((DVecA‘𝐾)‘𝑊)) = (LSSum‘((DVecA‘𝐾)‘𝑊))
11 eqid 2801 . . . . . 6 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
12 dib2dim.p . . . . . 6 (𝜑 → (𝑃𝐴𝑃 𝑊))
13 dib2dim.q . . . . . 6 (𝜑 → (𝑄𝐴𝑄 𝑊))
146, 7, 8, 2, 9, 10, 11, 1, 12, 13dia2dim 38372 . . . . 5 (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘(𝑃 𝑄)) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)))
1514sseld 3917 . . . 4 (𝜑 → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 𝑄)) → 𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄))))
1615anim1d 613 . . 3 (𝜑 → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) → (𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
171simpld 498 . . . . 5 (𝜑𝐾 ∈ HL)
1812simpld 498 . . . . 5 (𝜑𝑃𝐴)
1913simpld 498 . . . . 5 (𝜑𝑄𝐴)
20 eqid 2801 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2120, 7, 8hlatjcl 36662 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2217, 18, 19, 21syl3anc 1368 . . . 4 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
2312simprd 499 . . . . 5 (𝜑𝑃 𝑊)
2413simprd 499 . . . . 5 (𝜑𝑄 𝑊)
2517hllatd 36659 . . . . . 6 (𝜑𝐾 ∈ Lat)
2620, 8atbase 36584 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2718, 26syl 17 . . . . . 6 (𝜑𝑃 ∈ (Base‘𝐾))
2820, 8atbase 36584 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2919, 28syl 17 . . . . . 6 (𝜑𝑄 ∈ (Base‘𝐾))
301simprd 499 . . . . . . 7 (𝜑𝑊𝐻)
3120, 2lhpbase 37293 . . . . . . 7 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3230, 31syl 17 . . . . . 6 (𝜑𝑊 ∈ (Base‘𝐾))
3320, 6, 7latjle12 17668 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
3425, 27, 29, 32, 33syl13anc 1369 . . . . 5 (𝜑 → ((𝑃 𝑊𝑄 𝑊) ↔ (𝑃 𝑄) 𝑊))
3523, 24, 34mpbi2and 711 . . . 4 (𝜑 → (𝑃 𝑄) 𝑊)
36 eqid 2801 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
37 eqid 2801 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
3820, 6, 2, 36, 37, 11, 3dibopelval2 38440 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) 𝑊)) → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑃 𝑄)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
391, 22, 35, 38syl12anc 835 . . 3 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑃 𝑄)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
40 dib2dim.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
41 dib2dim.s . . . 4 = (LSSum‘𝑈)
4227, 23jca 515 . . . 4 (𝜑 → (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 𝑊))
4329, 24jca 515 . . . 4 (𝜑 → (𝑄 ∈ (Base‘𝐾) ∧ 𝑄 𝑊))
4420, 6, 2, 36, 37, 9, 40, 10, 41, 11, 3, 1, 42, 43diblsmopel 38466 . . 3 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑃) (𝐼𝑄)) ↔ (𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))))))
4516, 39, 443imtr4d 297 . 2 (𝜑 → (⟨𝑓, 𝑠⟩ ∈ (𝐼‘(𝑃 𝑄)) → ⟨𝑓, 𝑠⟩ ∈ ((𝐼𝑃) (𝐼𝑄))))
465, 45relssdv 5629 1 (𝜑 → (𝐼‘(𝑃 𝑄)) ⊆ ((𝐼𝑃) (𝐼𝑄)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ⊆ wss 3884  ⟨cop 4534   class class class wbr 5033   ↦ cmpt 5113   I cid 5427   ↾ cres 5525  Rel wrel 5528  ‘cfv 6328  (class class class)co 7139  Basecbs 16479  lecple 16568  joincjn 17550  Latclat 17651  LSSumclsm 18755  Atomscatm 36558  HLchlt 36645  LHypclh 37279  LTrncltrn 37396  DVecAcdveca 38297  DIsoAcdia 38323  DVecHcdvh 38373  DIsoBcdib 38433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-riotaBAD 36248 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-0g 16711  df-proset 17534  df-poset 17552  df-plt 17564  df-lub 17580  df-glb 17581  df-join 17582  df-meet 17583  df-p0 17645  df-p1 17646  df-lat 17652  df-clat 17714  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-cntz 18443  df-lsm 18757  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19501  df-lmod 19633  df-lss 19701  df-lsp 19741  df-lvec 19872  df-oposet 36471  df-ol 36473  df-oml 36474  df-covers 36561  df-ats 36562  df-atl 36593  df-cvlat 36617  df-hlat 36646  df-llines 36793  df-lplanes 36794  df-lvols 36795  df-lines 36796  df-psubsp 36798  df-pmap 36799  df-padd 37091  df-lhyp 37283  df-laut 37284  df-ldil 37399  df-ltrn 37400  df-trl 37454  df-tgrp 38038  df-tendo 38050  df-edring 38052  df-dveca 38298  df-disoa 38324  df-dvech 38374  df-dib 38434 This theorem is referenced by:  dih2dimb  38539
 Copyright terms: Public domain W3C validator