MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustid Structured version   Visualization version   GIF version

Theorem metustid 24493
Description: The identity diagonal is included in all elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustid ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustid
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5992 . . 3 Rel ( I ↾ 𝑋)
21a1i 11 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → Rel ( I ↾ 𝑋))
3 vex 3463 . . . . . . . . . . . . . . 15 𝑞 ∈ V
43brresi 5975 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ (𝑝𝑋𝑝 I 𝑞))
5 df-br 5120 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋))
63ideq 5832 . . . . . . . . . . . . . . 15 (𝑝 I 𝑞𝑝 = 𝑞)
76anbi2i 623 . . . . . . . . . . . . . 14 ((𝑝𝑋𝑝 I 𝑞) ↔ (𝑝𝑋𝑝 = 𝑞))
84, 5, 73bitr3i 301 . . . . . . . . . . . . 13 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) ↔ (𝑝𝑋𝑝 = 𝑞))
98biimpi 216 . . . . . . . . . . . 12 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → (𝑝𝑋𝑝 = 𝑞))
109ad2antlr 727 . . . . . . . . . . 11 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝑋𝑝 = 𝑞))
1110simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝 = 𝑞)
12 df-ov 7408 . . . . . . . . . . 11 (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑝⟩)
13 opeq2 4850 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ⟨𝑝, 𝑝⟩ = ⟨𝑝, 𝑞⟩)
1413fveq2d 6880 . . . . . . . . . . 11 (𝑝 = 𝑞 → (𝐷‘⟨𝑝, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1512, 14eqtrid 2782 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
1611, 15syl 17 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
17 simplll 774 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
1810simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝𝑋)
19 psmet0 24247 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋) → (𝑝𝐷𝑝) = 0)
2017, 18, 19syl2anc 584 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = 0)
2116, 20eqtr3d 2772 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) = 0)
22 0xr 11282 . . . . . . . . . 10 0 ∈ ℝ*
23 rpxr 13018 . . . . . . . . . 10 (𝑎 ∈ ℝ+𝑎 ∈ ℝ*)
24 rpgt0 13021 . . . . . . . . . 10 (𝑎 ∈ ℝ+ → 0 < 𝑎)
25 lbico1 13417 . . . . . . . . . 10 ((0 ∈ ℝ*𝑎 ∈ ℝ* ∧ 0 < 𝑎) → 0 ∈ (0[,)𝑎))
2622, 23, 24, 25mp3an2i 1468 . . . . . . . . 9 (𝑎 ∈ ℝ+ → 0 ∈ (0[,)𝑎))
2726adantl 481 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 0 ∈ (0[,)𝑎))
2821, 27eqeltrd 2834 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
29 psmetf 24245 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3029ffund 6710 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
3130ad3antrrr 730 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → Fun 𝐷)
3211, 18eqeltrrd 2835 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑞𝑋)
3318, 32opelxpd 5693 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3429fdmd 6716 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
3534ad3antrrr 730 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3633, 35eleqtrrd 2837 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
37 fvimacnv 7043 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3831, 36, 37syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3928, 38mpbid 232 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
4039adantr 480 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
41 simpr 484 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
4240, 41eleqtrrd 2837 . . . 4 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
43 simplr 768 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → 𝐴𝐹)
44 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4544metustel 24489 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645ad2antrr 726 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4743, 46mpbid 232 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4842, 47r19.29a 3148 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
4948ex 412 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
502, 49relssdv 5767 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  wss 3926  cop 4607   class class class wbr 5119  cmpt 5201   I cid 5547   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Rel wrel 5659  Fun wfun 6525  cfv 6531  (class class class)co 7405  0cc0 11129  *cxr 11268   < clt 11269  +crp 13008  [,)cico 13364  PsMetcpsmet 21299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-addrcl 11190  ax-rnegex 11200  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-rp 13009  df-ico 13368  df-psmet 21307
This theorem is referenced by:  metustfbas  24496  metust  24497
  Copyright terms: Public domain W3C validator