MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustid Structured version   Visualization version   GIF version

Theorem metustid 24588
Description: The identity diagonal is included in all elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustid ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustid
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6035 . . 3 Rel ( I ↾ 𝑋)
21a1i 11 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → Rel ( I ↾ 𝑋))
3 vex 3492 . . . . . . . . . . . . . . 15 𝑞 ∈ V
43brresi 6018 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ (𝑝𝑋𝑝 I 𝑞))
5 df-br 5167 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋))
63ideq 5877 . . . . . . . . . . . . . . 15 (𝑝 I 𝑞𝑝 = 𝑞)
76anbi2i 622 . . . . . . . . . . . . . 14 ((𝑝𝑋𝑝 I 𝑞) ↔ (𝑝𝑋𝑝 = 𝑞))
84, 5, 73bitr3i 301 . . . . . . . . . . . . 13 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) ↔ (𝑝𝑋𝑝 = 𝑞))
98biimpi 216 . . . . . . . . . . . 12 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → (𝑝𝑋𝑝 = 𝑞))
109ad2antlr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝑋𝑝 = 𝑞))
1110simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝 = 𝑞)
12 df-ov 7451 . . . . . . . . . . 11 (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑝⟩)
13 opeq2 4898 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ⟨𝑝, 𝑝⟩ = ⟨𝑝, 𝑞⟩)
1413fveq2d 6924 . . . . . . . . . . 11 (𝑝 = 𝑞 → (𝐷‘⟨𝑝, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1512, 14eqtrid 2792 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
1611, 15syl 17 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
17 simplll 774 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
1810simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝𝑋)
19 psmet0 24339 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋) → (𝑝𝐷𝑝) = 0)
2017, 18, 19syl2anc 583 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = 0)
2116, 20eqtr3d 2782 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) = 0)
22 0xr 11337 . . . . . . . . . 10 0 ∈ ℝ*
23 rpxr 13066 . . . . . . . . . 10 (𝑎 ∈ ℝ+𝑎 ∈ ℝ*)
24 rpgt0 13069 . . . . . . . . . 10 (𝑎 ∈ ℝ+ → 0 < 𝑎)
25 lbico1 13461 . . . . . . . . . 10 ((0 ∈ ℝ*𝑎 ∈ ℝ* ∧ 0 < 𝑎) → 0 ∈ (0[,)𝑎))
2622, 23, 24, 25mp3an2i 1466 . . . . . . . . 9 (𝑎 ∈ ℝ+ → 0 ∈ (0[,)𝑎))
2726adantl 481 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 0 ∈ (0[,)𝑎))
2821, 27eqeltrd 2844 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
29 psmetf 24337 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3029ffund 6751 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
3130ad3antrrr 729 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → Fun 𝐷)
3211, 18eqeltrrd 2845 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑞𝑋)
3318, 32opelxpd 5739 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3429fdmd 6757 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
3534ad3antrrr 729 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3633, 35eleqtrrd 2847 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
37 fvimacnv 7086 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3831, 36, 37syl2anc 583 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3928, 38mpbid 232 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
4039adantr 480 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
41 simpr 484 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
4240, 41eleqtrrd 2847 . . . 4 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
43 simplr 768 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → 𝐴𝐹)
44 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4544metustel 24584 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645ad2antrr 725 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4743, 46mpbid 232 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4842, 47r19.29a 3168 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
4948ex 412 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
502, 49relssdv 5812 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249   I cid 5592   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705  Fun wfun 6567  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323   < clt 11324  +crp 13057  [,)cico 13409  PsMetcpsmet 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-rp 13058  df-ico 13413  df-psmet 21379
This theorem is referenced by:  metustfbas  24591  metust  24592
  Copyright terms: Public domain W3C validator