MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustid Structured version   Visualization version   GIF version

Theorem metustid 23161
Description: The identity diagonal is included in all elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustid ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustid
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5847 . . 3 Rel ( I ↾ 𝑋)
21a1i 11 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → Rel ( I ↾ 𝑋))
3 vex 3444 . . . . . . . . . . . . . . 15 𝑞 ∈ V
43brresi 5827 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ (𝑝𝑋𝑝 I 𝑞))
5 df-br 5031 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋))
63ideq 5687 . . . . . . . . . . . . . . 15 (𝑝 I 𝑞𝑝 = 𝑞)
76anbi2i 625 . . . . . . . . . . . . . 14 ((𝑝𝑋𝑝 I 𝑞) ↔ (𝑝𝑋𝑝 = 𝑞))
84, 5, 73bitr3i 304 . . . . . . . . . . . . 13 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) ↔ (𝑝𝑋𝑝 = 𝑞))
98biimpi 219 . . . . . . . . . . . 12 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → (𝑝𝑋𝑝 = 𝑞))
109ad2antlr 726 . . . . . . . . . . 11 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝑋𝑝 = 𝑞))
1110simprd 499 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝 = 𝑞)
12 df-ov 7138 . . . . . . . . . . 11 (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑝⟩)
13 opeq2 4765 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ⟨𝑝, 𝑝⟩ = ⟨𝑝, 𝑞⟩)
1413fveq2d 6649 . . . . . . . . . . 11 (𝑝 = 𝑞 → (𝐷‘⟨𝑝, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1512, 14syl5eq 2845 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
1611, 15syl 17 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
17 simplll 774 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
1810simpld 498 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝𝑋)
19 psmet0 22915 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋) → (𝑝𝐷𝑝) = 0)
2017, 18, 19syl2anc 587 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = 0)
2116, 20eqtr3d 2835 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) = 0)
22 0xr 10677 . . . . . . . . . 10 0 ∈ ℝ*
23 rpxr 12386 . . . . . . . . . 10 (𝑎 ∈ ℝ+𝑎 ∈ ℝ*)
24 rpgt0 12389 . . . . . . . . . 10 (𝑎 ∈ ℝ+ → 0 < 𝑎)
25 lbico1 12779 . . . . . . . . . 10 ((0 ∈ ℝ*𝑎 ∈ ℝ* ∧ 0 < 𝑎) → 0 ∈ (0[,)𝑎))
2622, 23, 24, 25mp3an2i 1463 . . . . . . . . 9 (𝑎 ∈ ℝ+ → 0 ∈ (0[,)𝑎))
2726adantl 485 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 0 ∈ (0[,)𝑎))
2821, 27eqeltrd 2890 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
29 psmetf 22913 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3029ffund 6491 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
3130ad3antrrr 729 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → Fun 𝐷)
3211, 18eqeltrrd 2891 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑞𝑋)
3318, 32opelxpd 5557 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3429fdmd 6497 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
3534ad3antrrr 729 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3633, 35eleqtrrd 2893 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
37 fvimacnv 6800 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3831, 36, 37syl2anc 587 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3928, 38mpbid 235 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
4039adantr 484 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
41 simpr 488 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
4240, 41eleqtrrd 2893 . . . 4 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
43 simplr 768 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → 𝐴𝐹)
44 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4544metustel 23157 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645ad2antrr 725 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4743, 46mpbid 235 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4842, 47r19.29a 3248 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
4948ex 416 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
502, 49relssdv 5625 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  wss 3881  cop 4531   class class class wbr 5030  cmpt 5110   I cid 5424   × cxp 5517  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Rel wrel 5524  Fun wfun 6318  cfv 6324  (class class class)co 7135  0cc0 10526  *cxr 10663   < clt 10664  +crp 12377  [,)cico 12728  PsMetcpsmet 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-addrcl 10587  ax-rnegex 10597  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-rp 12378  df-ico 12732  df-psmet 20083
This theorem is referenced by:  metustfbas  23164  metust  23165
  Copyright terms: Public domain W3C validator