MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustid Structured version   Visualization version   GIF version

Theorem metustid 24478
Description: The identity diagonal is included in all elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustid ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustid
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5989 . . 3 Rel ( I ↾ 𝑋)
21a1i 11 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → Rel ( I ↾ 𝑋))
3 vex 3461 . . . . . . . . . . . . . . 15 𝑞 ∈ V
43brresi 5972 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ (𝑝𝑋𝑝 I 𝑞))
5 df-br 5117 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋))
63ideq 5829 . . . . . . . . . . . . . . 15 (𝑝 I 𝑞𝑝 = 𝑞)
76anbi2i 623 . . . . . . . . . . . . . 14 ((𝑝𝑋𝑝 I 𝑞) ↔ (𝑝𝑋𝑝 = 𝑞))
84, 5, 73bitr3i 301 . . . . . . . . . . . . 13 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) ↔ (𝑝𝑋𝑝 = 𝑞))
98biimpi 216 . . . . . . . . . . . 12 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → (𝑝𝑋𝑝 = 𝑞))
109ad2antlr 727 . . . . . . . . . . 11 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝑋𝑝 = 𝑞))
1110simprd 495 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝 = 𝑞)
12 df-ov 7402 . . . . . . . . . . 11 (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑝⟩)
13 opeq2 4847 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ⟨𝑝, 𝑝⟩ = ⟨𝑝, 𝑞⟩)
1413fveq2d 6876 . . . . . . . . . . 11 (𝑝 = 𝑞 → (𝐷‘⟨𝑝, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1512, 14eqtrid 2781 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
1611, 15syl 17 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
17 simplll 774 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
1810simpld 494 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝𝑋)
19 psmet0 24232 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋) → (𝑝𝐷𝑝) = 0)
2017, 18, 19syl2anc 584 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = 0)
2116, 20eqtr3d 2771 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) = 0)
22 0xr 11274 . . . . . . . . . 10 0 ∈ ℝ*
23 rpxr 13010 . . . . . . . . . 10 (𝑎 ∈ ℝ+𝑎 ∈ ℝ*)
24 rpgt0 13013 . . . . . . . . . 10 (𝑎 ∈ ℝ+ → 0 < 𝑎)
25 lbico1 13407 . . . . . . . . . 10 ((0 ∈ ℝ*𝑎 ∈ ℝ* ∧ 0 < 𝑎) → 0 ∈ (0[,)𝑎))
2622, 23, 24, 25mp3an2i 1467 . . . . . . . . 9 (𝑎 ∈ ℝ+ → 0 ∈ (0[,)𝑎))
2726adantl 481 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 0 ∈ (0[,)𝑎))
2821, 27eqeltrd 2833 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
29 psmetf 24230 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3029ffund 6706 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
3130ad3antrrr 730 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → Fun 𝐷)
3211, 18eqeltrrd 2834 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑞𝑋)
3318, 32opelxpd 5690 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3429fdmd 6712 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
3534ad3antrrr 730 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3633, 35eleqtrrd 2836 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
37 fvimacnv 7039 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3831, 36, 37syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3928, 38mpbid 232 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
4039adantr 480 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
41 simpr 484 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
4240, 41eleqtrrd 2836 . . . 4 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
43 simplr 768 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → 𝐴𝐹)
44 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4544metustel 24474 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645ad2antrr 726 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4743, 46mpbid 232 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4842, 47r19.29a 3146 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
4948ex 412 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
502, 49relssdv 5764 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  wss 3924  cop 4605   class class class wbr 5116  cmpt 5198   I cid 5544   × cxp 5649  ccnv 5650  dom cdm 5651  ran crn 5652  cres 5653  cima 5654  Rel wrel 5656  Fun wfun 6521  cfv 6527  (class class class)co 7399  0cc0 11121  *cxr 11260   < clt 11261  +crp 13000  [,)cico 13355  PsMetcpsmet 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-addrcl 11182  ax-rnegex 11192  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-po 5558  df-so 5559  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-rp 13001  df-ico 13359  df-psmet 21292
This theorem is referenced by:  metustfbas  24481  metust  24482
  Copyright terms: Public domain W3C validator