MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustid Structured version   Visualization version   GIF version

Theorem metustid 23156
Description: The identity diagonal is included in all elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustid ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustid
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5875 . . 3 Rel ( I ↾ 𝑋)
21a1i 11 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → Rel ( I ↾ 𝑋))
3 vex 3496 . . . . . . . . . . . . . . 15 𝑞 ∈ V
43brresi 5855 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ (𝑝𝑋𝑝 I 𝑞))
5 df-br 5058 . . . . . . . . . . . . . 14 (𝑝( I ↾ 𝑋)𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋))
63ideq 5716 . . . . . . . . . . . . . . 15 (𝑝 I 𝑞𝑝 = 𝑞)
76anbi2i 624 . . . . . . . . . . . . . 14 ((𝑝𝑋𝑝 I 𝑞) ↔ (𝑝𝑋𝑝 = 𝑞))
84, 5, 73bitr3i 303 . . . . . . . . . . . . 13 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) ↔ (𝑝𝑋𝑝 = 𝑞))
98biimpi 218 . . . . . . . . . . . 12 (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → (𝑝𝑋𝑝 = 𝑞))
109ad2antlr 725 . . . . . . . . . . 11 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝑋𝑝 = 𝑞))
1110simprd 498 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝 = 𝑞)
12 df-ov 7151 . . . . . . . . . . 11 (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑝⟩)
13 opeq2 4796 . . . . . . . . . . . 12 (𝑝 = 𝑞 → ⟨𝑝, 𝑝⟩ = ⟨𝑝, 𝑞⟩)
1413fveq2d 6667 . . . . . . . . . . 11 (𝑝 = 𝑞 → (𝐷‘⟨𝑝, 𝑝⟩) = (𝐷‘⟨𝑝, 𝑞⟩))
1512, 14syl5eq 2866 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
1611, 15syl 17 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = (𝐷‘⟨𝑝, 𝑞⟩))
17 simplll 773 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ (PsMet‘𝑋))
1810simpld 497 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑝𝑋)
19 psmet0 22910 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋) → (𝑝𝐷𝑝) = 0)
2017, 18, 19syl2anc 586 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝑝𝐷𝑝) = 0)
2116, 20eqtr3d 2856 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) = 0)
22 0xr 10680 . . . . . . . . . 10 0 ∈ ℝ*
23 rpxr 12390 . . . . . . . . . 10 (𝑎 ∈ ℝ+𝑎 ∈ ℝ*)
24 rpgt0 12393 . . . . . . . . . 10 (𝑎 ∈ ℝ+ → 0 < 𝑎)
25 lbico1 12783 . . . . . . . . . 10 ((0 ∈ ℝ*𝑎 ∈ ℝ* ∧ 0 < 𝑎) → 0 ∈ (0[,)𝑎))
2622, 23, 24, 25mp3an2i 1459 . . . . . . . . 9 (𝑎 ∈ ℝ+ → 0 ∈ (0[,)𝑎))
2726adantl 484 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 0 ∈ (0[,)𝑎))
2821, 27eqeltrd 2911 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
29 psmetf 22908 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
3029ffund 6511 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
3130ad3antrrr 728 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → Fun 𝐷)
3211, 18eqeltrrd 2912 . . . . . . . . . 10 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → 𝑞𝑋)
3318, 32opelxpd 5586 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
3429fdmd 6516 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
3534ad3antrrr 728 . . . . . . . . 9 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → dom 𝐷 = (𝑋 × 𝑋))
3633, 35eleqtrrd 2914 . . . . . . . 8 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
37 fvimacnv 6816 . . . . . . . 8 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3831, 36, 37syl2anc 586 . . . . . . 7 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
3928, 38mpbid 234 . . . . . 6 ((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
4039adantr 483 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
41 simpr 487 . . . . 5 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐴 = (𝐷 “ (0[,)𝑎)))
4240, 41eleqtrrd 2914 . . . 4 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
43 simplr 767 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → 𝐴𝐹)
44 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4544metustel 23152 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645ad2antrr 724 . . . . 5 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4743, 46mpbid 234 . . . 4 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
4842, 47r19.29a 3287 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ ⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
4948ex 415 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → (⟨𝑝, 𝑞⟩ ∈ ( I ↾ 𝑋) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
502, 49relssdv 5654 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ( I ↾ 𝑋) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  wrex 3137  wss 3934  cop 4565   class class class wbr 5057  cmpt 5137   I cid 5452   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cres 5550  cima 5551  Rel wrel 5553  Fun wfun 6342  cfv 6348  (class class class)co 7148  0cc0 10529  *cxr 10666   < clt 10667  +crp 12381  [,)cico 12732  PsMetcpsmet 20521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-addrcl 10590  ax-rnegex 10600  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-rp 12382  df-ico 12736  df-psmet 20529
This theorem is referenced by:  metustfbas  23159  metust  23160
  Copyright terms: Public domain W3C validator