![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dih2dimbALTN | Structured version Visualization version GIF version |
Description: Extend dia2dim 37655 to isomorphism H. (This version combines dib2dim 37821 and dih2dimb 37822 for shorter overall proof, but may be less easy to understand. TODO: decide which to use.) (Contributed by NM, 22-Sep-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dih2dimb.l | ⊢ ≤ = (le‘𝐾) |
dih2dimb.j | ⊢ ∨ = (join‘𝐾) |
dih2dimb.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dih2dimb.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dih2dimb.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dih2dimb.s | ⊢ ⊕ = (LSSum‘𝑈) |
dih2dimb.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dih2dimb.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dih2dimb.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) |
dih2dimb.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) |
Ref | Expression |
---|---|
dih2dimbALTN | ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dih2dimb.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dih2dimb.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2779 | . . . . 5 ⊢ ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊) | |
4 | 2, 3 | dibvalrel 37741 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄))) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → Rel (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄))) |
6 | dih2dimb.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
7 | dih2dimb.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
8 | dih2dimb.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | eqid 2779 | . . . . . . 7 ⊢ ((DVecA‘𝐾)‘𝑊) = ((DVecA‘𝐾)‘𝑊) | |
10 | eqid 2779 | . . . . . . 7 ⊢ (LSSum‘((DVecA‘𝐾)‘𝑊)) = (LSSum‘((DVecA‘𝐾)‘𝑊)) | |
11 | eqid 2779 | . . . . . . 7 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
12 | dih2dimb.p | . . . . . . 7 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) | |
13 | dih2dimb.q | . . . . . . 7 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) | |
14 | 6, 7, 8, 2, 9, 10, 11, 1, 12, 13 | dia2dim 37655 | . . . . . 6 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄))) |
15 | 14 | sseld 3858 | . . . . 5 ⊢ (𝜑 → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) → 𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)))) |
16 | 15 | anim1d 601 | . . . 4 ⊢ (𝜑 → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) → (𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
17 | 1 | simpld 487 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
18 | 12 | simpld 487 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
19 | 13 | simpld 487 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
20 | eqid 2779 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | 20, 7, 8 | hlatjcl 35945 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
22 | 17, 18, 19, 21 | syl3anc 1351 | . . . . 5 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
23 | 12 | simprd 488 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≤ 𝑊) |
24 | 13 | simprd 488 | . . . . . 6 ⊢ (𝜑 → 𝑄 ≤ 𝑊) |
25 | hllat 35941 | . . . . . . . 8 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
26 | 17, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Lat) |
27 | 20, 8 | atbase 35867 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
28 | 18, 27 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
29 | 20, 8 | atbase 35867 | . . . . . . . 8 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
30 | 19, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
31 | 1 | simprd 488 | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
32 | 20, 2 | lhpbase 36576 | . . . . . . . 8 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
33 | 31, 32 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
34 | 20, 6, 7 | latjle12 17530 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
35 | 26, 28, 30, 33, 34 | syl13anc 1352 | . . . . . 6 ⊢ (𝜑 → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
36 | 23, 24, 35 | mpbi2and 699 | . . . . 5 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ≤ 𝑊) |
37 | eqid 2779 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
38 | eqid 2779 | . . . . . 6 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
39 | 20, 6, 2, 37, 38, 11, 3 | dibopelval2 37723 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
40 | 1, 22, 36, 39 | syl12anc 824 | . . . 4 ⊢ (𝜑 → (〈𝑓, 𝑠〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
41 | dih2dimb.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
42 | dih2dimb.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝑈) | |
43 | 28, 23 | jca 504 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≤ 𝑊)) |
44 | 30, 24 | jca 504 | . . . . 5 ⊢ (𝜑 → (𝑄 ∈ (Base‘𝐾) ∧ 𝑄 ≤ 𝑊)) |
45 | 20, 6, 2, 37, 38, 9, 41, 10, 42, 11, 3, 1, 43, 44 | diblsmopel 37749 | . . . 4 ⊢ (𝜑 → (〈𝑓, 𝑠〉 ∈ ((((DIsoB‘𝐾)‘𝑊)‘𝑃) ⊕ (((DIsoB‘𝐾)‘𝑊)‘𝑄)) ↔ (𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
46 | 16, 40, 45 | 3imtr4d 286 | . . 3 ⊢ (𝜑 → (〈𝑓, 𝑠〉 ∈ (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) → 〈𝑓, 𝑠〉 ∈ ((((DIsoB‘𝐾)‘𝑊)‘𝑃) ⊕ (((DIsoB‘𝐾)‘𝑊)‘𝑄)))) |
47 | 5, 46 | relssdv 5511 | . 2 ⊢ (𝜑 → (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ⊆ ((((DIsoB‘𝐾)‘𝑊)‘𝑃) ⊕ (((DIsoB‘𝐾)‘𝑊)‘𝑄))) |
48 | dih2dimb.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
49 | 20, 6, 2, 48, 3 | dihvalb 37815 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ≤ 𝑊)) → (𝐼‘(𝑃 ∨ 𝑄)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄))) |
50 | 1, 22, 36, 49 | syl12anc 824 | . 2 ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄))) |
51 | 20, 6, 2, 48, 3 | dihvalb 37815 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≤ 𝑊)) → (𝐼‘𝑃) = (((DIsoB‘𝐾)‘𝑊)‘𝑃)) |
52 | 1, 28, 23, 51 | syl12anc 824 | . . 3 ⊢ (𝜑 → (𝐼‘𝑃) = (((DIsoB‘𝐾)‘𝑊)‘𝑃)) |
53 | 20, 6, 2, 48, 3 | dihvalb 37815 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ (Base‘𝐾) ∧ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = (((DIsoB‘𝐾)‘𝑊)‘𝑄)) |
54 | 1, 30, 24, 53 | syl12anc 824 | . . 3 ⊢ (𝜑 → (𝐼‘𝑄) = (((DIsoB‘𝐾)‘𝑊)‘𝑄)) |
55 | 52, 54 | oveq12d 6994 | . 2 ⊢ (𝜑 → ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) = ((((DIsoB‘𝐾)‘𝑊)‘𝑃) ⊕ (((DIsoB‘𝐾)‘𝑊)‘𝑄))) |
56 | 47, 50, 55 | 3sstr4d 3905 | 1 ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ⊆ wss 3830 〈cop 4447 class class class wbr 4929 ↦ cmpt 5008 I cid 5311 ↾ cres 5409 Rel wrel 5412 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 lecple 16428 joincjn 17412 Latclat 17513 LSSumclsm 18520 Atomscatm 35841 HLchlt 35928 LHypclh 36562 LTrncltrn 36679 DVecAcdveca 37580 DIsoAcdia 37606 DVecHcdvh 37656 DIsoBcdib 37716 DIsoHcdih 37806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-riotaBAD 35531 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-tpos 7695 df-undef 7742 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-0g 16571 df-proset 17396 df-poset 17414 df-plt 17426 df-lub 17442 df-glb 17443 df-join 17444 df-meet 17445 df-p0 17507 df-p1 17508 df-lat 17514 df-clat 17576 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-grp 17894 df-minusg 17895 df-sbg 17896 df-subg 18060 df-cntz 18218 df-lsm 18522 df-cmn 18668 df-abl 18669 df-mgp 18963 df-ur 18975 df-ring 19022 df-oppr 19096 df-dvdsr 19114 df-unit 19115 df-invr 19145 df-dvr 19156 df-drng 19227 df-lmod 19358 df-lss 19426 df-lsp 19466 df-lvec 19597 df-oposet 35754 df-ol 35756 df-oml 35757 df-covers 35844 df-ats 35845 df-atl 35876 df-cvlat 35900 df-hlat 35929 df-llines 36076 df-lplanes 36077 df-lvols 36078 df-lines 36079 df-psubsp 36081 df-pmap 36082 df-padd 36374 df-lhyp 36566 df-laut 36567 df-ldil 36682 df-ltrn 36683 df-trl 36737 df-tgrp 37321 df-tendo 37333 df-edring 37335 df-dveca 37581 df-disoa 37607 df-dvech 37657 df-dib 37717 df-dih 37807 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |