Step | Hyp | Ref
| Expression |
1 | | topontop 21970 |
. . . . . 6
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) |
2 | 1 | ad2antrr 722 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝑅 ∈ Top) |
3 | | simprl 767 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝐴 ⊆ 𝑋) |
4 | | toponuni 21971 |
. . . . . . 7
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) |
5 | 4 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝑋 = ∪ 𝑅) |
6 | 3, 5 | sseqtrd 3957 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝐴 ⊆ ∪ 𝑅) |
7 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝑅 =
∪ 𝑅 |
8 | 7 | clscld 22106 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑅)
→ ((cls‘𝑅)‘𝐴) ∈ (Clsd‘𝑅)) |
9 | 2, 6, 8 | syl2anc 583 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘𝑅)‘𝐴) ∈ (Clsd‘𝑅)) |
10 | | topontop 21970 |
. . . . . 6
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) |
11 | 10 | ad2antlr 723 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝑆 ∈ Top) |
12 | | simprr 769 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝐵 ⊆ 𝑌) |
13 | | toponuni 21971 |
. . . . . . 7
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝑆) |
14 | 13 | ad2antlr 723 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝑌 = ∪ 𝑆) |
15 | 12, 14 | sseqtrd 3957 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝐵 ⊆ ∪ 𝑆) |
16 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝑆 =
∪ 𝑆 |
17 | 16 | clscld 22106 |
. . . . 5
⊢ ((𝑆 ∈ Top ∧ 𝐵 ⊆ ∪ 𝑆)
→ ((cls‘𝑆)‘𝐵) ∈ (Clsd‘𝑆)) |
18 | 11, 15, 17 | syl2anc 583 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘𝑆)‘𝐵) ∈ (Clsd‘𝑆)) |
19 | | txcld 22662 |
. . . 4
⊢
((((cls‘𝑅)‘𝐴) ∈ (Clsd‘𝑅) ∧ ((cls‘𝑆)‘𝐵) ∈ (Clsd‘𝑆)) → (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵)) ∈ (Clsd‘(𝑅 ×t 𝑆))) |
20 | 9, 18, 19 | syl2anc 583 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵)) ∈ (Clsd‘(𝑅 ×t 𝑆))) |
21 | 7 | sscls 22115 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑅)
→ 𝐴 ⊆
((cls‘𝑅)‘𝐴)) |
22 | 2, 6, 21 | syl2anc 583 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝐴 ⊆ ((cls‘𝑅)‘𝐴)) |
23 | 16 | sscls 22115 |
. . . . 5
⊢ ((𝑆 ∈ Top ∧ 𝐵 ⊆ ∪ 𝑆)
→ 𝐵 ⊆
((cls‘𝑆)‘𝐵)) |
24 | 11, 15, 23 | syl2anc 583 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → 𝐵 ⊆ ((cls‘𝑆)‘𝐵)) |
25 | | xpss12 5595 |
. . . 4
⊢ ((𝐴 ⊆ ((cls‘𝑅)‘𝐴) ∧ 𝐵 ⊆ ((cls‘𝑆)‘𝐵)) → (𝐴 × 𝐵) ⊆ (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) |
26 | 22, 24, 25 | syl2anc 583 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → (𝐴 × 𝐵) ⊆ (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) |
27 | | eqid 2738 |
. . . 4
⊢ ∪ (𝑅
×t 𝑆) =
∪ (𝑅 ×t 𝑆) |
28 | 27 | clsss2 22131 |
. . 3
⊢
(((((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵)) ∈ (Clsd‘(𝑅 ×t 𝑆)) ∧ (𝐴 × 𝐵) ⊆ (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) → ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) ⊆ (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) |
29 | 20, 26, 28 | syl2anc 583 |
. 2
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) ⊆ (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) |
30 | | relxp 5598 |
. . . 4
⊢ Rel
(((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵)) |
31 | 30 | a1i 11 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → Rel (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) |
32 | | opelxp 5616 |
. . . 4
⊢
(〈𝑥, 𝑦〉 ∈ (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵)) ↔ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) |
33 | | eltx 22627 |
. . . . . . . . 9
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑢 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑧 ∈ 𝑢 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) |
34 | 33 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (𝑢 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑧 ∈ 𝑢 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) |
35 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑧 ∈ (𝑟 × 𝑠) ↔ 〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠))) |
36 | 35 | anbi1d 629 |
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝑧 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢) ↔ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) |
37 | 36 | 2rexbidv 3228 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) |
38 | 37 | rspccva 3551 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑢 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢) ∧ 〈𝑥, 𝑦〉 ∈ 𝑢) → ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢)) |
39 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑅 ∈ Top) |
40 | 6 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝐴 ⊆ ∪ 𝑅) |
41 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑥 ∈ ((cls‘𝑅)‘𝐴)) |
42 | | simprll 775 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑟 ∈ 𝑅) |
43 | | simprrl 777 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠)) |
44 | | opelxp 5616 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ↔ (𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑠)) |
45 | 43, 44 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → (𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑠)) |
46 | 45 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑥 ∈ 𝑟) |
47 | 7 | clsndisj 22134 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑅
∧ 𝑥 ∈
((cls‘𝑅)‘𝐴)) ∧ (𝑟 ∈ 𝑅 ∧ 𝑥 ∈ 𝑟)) → (𝑟 ∩ 𝐴) ≠ ∅) |
48 | 39, 40, 41, 42, 46, 47 | syl32anc 1376 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → (𝑟 ∩ 𝐴) ≠ ∅) |
49 | | n0 4277 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ∩ 𝐴) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑟 ∩ 𝐴)) |
50 | 48, 49 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → ∃𝑧 𝑧 ∈ (𝑟 ∩ 𝐴)) |
51 | 11 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑆 ∈ Top) |
52 | 15 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝐵 ⊆ ∪ 𝑆) |
53 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑦 ∈ ((cls‘𝑆)‘𝐵)) |
54 | | simprlr 776 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑠 ∈ 𝑆) |
55 | 45 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → 𝑦 ∈ 𝑠) |
56 | 16 | clsndisj 22134 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ∈ Top ∧ 𝐵 ⊆ ∪ 𝑆
∧ 𝑦 ∈
((cls‘𝑆)‘𝐵)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ 𝑠)) → (𝑠 ∩ 𝐵) ≠ ∅) |
57 | 51, 52, 53, 54, 55, 56 | syl32anc 1376 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → (𝑠 ∩ 𝐵) ≠ ∅) |
58 | | n0 4277 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∩ 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑠 ∩ 𝐵)) |
59 | 57, 58 | sylib 217 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → ∃𝑤 𝑤 ∈ (𝑠 ∩ 𝐵)) |
60 | | exdistrv 1960 |
. . . . . . . . . . . . . 14
⊢
(∃𝑧∃𝑤(𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵)) ↔ (∃𝑧 𝑧 ∈ (𝑟 ∩ 𝐴) ∧ ∃𝑤 𝑤 ∈ (𝑠 ∩ 𝐵))) |
61 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵)) → 〈𝑧, 𝑤〉 ∈ ((𝑟 ∩ 𝐴) × (𝑠 ∩ 𝐵))) |
62 | | inxp 5730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵)) = ((𝑟 ∩ 𝐴) × (𝑠 ∩ 𝐵)) |
63 | 61, 62 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵)) → 〈𝑧, 𝑤〉 ∈ ((𝑟 × 𝑠) ∩ (𝐴 × 𝐵))) |
64 | 63 | elin1d 4128 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵)) → 〈𝑧, 𝑤〉 ∈ (𝑟 × 𝑠)) |
65 | | simprrr 778 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → (𝑟 × 𝑠) ⊆ 𝑢) |
66 | 65 | sselda 3917 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) ∧ 〈𝑧, 𝑤〉 ∈ (𝑟 × 𝑠)) → 〈𝑧, 𝑤〉 ∈ 𝑢) |
67 | 64, 66 | sylan2 592 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) ∧ (𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵))) → 〈𝑧, 𝑤〉 ∈ 𝑢) |
68 | 63 | elin2d 4129 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵)) → 〈𝑧, 𝑤〉 ∈ (𝐴 × 𝐵)) |
69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) ∧ (𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵))) → 〈𝑧, 𝑤〉 ∈ (𝐴 × 𝐵)) |
70 | | inelcm 4395 |
. . . . . . . . . . . . . . . . 17
⊢
((〈𝑧, 𝑤〉 ∈ 𝑢 ∧ 〈𝑧, 𝑤〉 ∈ (𝐴 × 𝐵)) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅) |
71 | 67, 69, 70 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) ∧ (𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵))) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅) |
72 | 71 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → ((𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵)) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅)) |
73 | 72 | exlimdvv 1938 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → (∃𝑧∃𝑤(𝑧 ∈ (𝑟 ∩ 𝐴) ∧ 𝑤 ∈ (𝑠 ∩ 𝐵)) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅)) |
74 | 60, 73 | syl5bir 242 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → ((∃𝑧 𝑧 ∈ (𝑟 ∩ 𝐴) ∧ ∃𝑤 𝑤 ∈ (𝑠 ∩ 𝐵)) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅)) |
75 | 50, 59, 74 | mp2and 695 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ ((𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆) ∧ (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢))) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅) |
76 | 75 | expr 456 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) ∧ (𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆)) → ((〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅)) |
77 | 76 | rexlimdvva 3222 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (〈𝑥, 𝑦〉 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅)) |
78 | 38, 77 | syl5 34 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → ((∀𝑧 ∈ 𝑢 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢) ∧ 〈𝑥, 𝑦〉 ∈ 𝑢) → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅)) |
79 | 78 | expd 415 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (∀𝑧 ∈ 𝑢 ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 (𝑧 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑢) → (〈𝑥, 𝑦〉 ∈ 𝑢 → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅))) |
80 | 34, 79 | sylbid 239 |
. . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (𝑢 ∈ (𝑅 ×t 𝑆) → (〈𝑥, 𝑦〉 ∈ 𝑢 → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅))) |
81 | 80 | ralrimiv 3106 |
. . . . . 6
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → ∀𝑢 ∈ (𝑅 ×t 𝑆)(〈𝑥, 𝑦〉 ∈ 𝑢 → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅)) |
82 | | txtopon 22650 |
. . . . . . . . 9
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
83 | 82 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
84 | | topontop 21970 |
. . . . . . . 8
⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑅 ×t 𝑆) ∈ Top) |
85 | 83, 84 | syl 17 |
. . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (𝑅 ×t 𝑆) ∈ Top) |
86 | | xpss12 5595 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌)) |
87 | 86 | ad2antlr 723 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (𝐴 × 𝐵) ⊆ (𝑋 × 𝑌)) |
88 | | toponuni 21971 |
. . . . . . . . 9
⊢ ((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
89 | 83, 88 | syl 17 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
90 | 87, 89 | sseqtrd 3957 |
. . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (𝐴 × 𝐵) ⊆ ∪
(𝑅 ×t
𝑆)) |
91 | 7 | clsss3 22118 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Top ∧ 𝐴 ⊆ ∪ 𝑅)
→ ((cls‘𝑅)‘𝐴) ⊆ ∪ 𝑅) |
92 | 2, 6, 91 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘𝑅)‘𝐴) ⊆ ∪ 𝑅) |
93 | 92, 5 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘𝑅)‘𝐴) ⊆ 𝑋) |
94 | 93 | sselda 3917 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ 𝑥 ∈ ((cls‘𝑅)‘𝐴)) → 𝑥 ∈ 𝑋) |
95 | 94 | adantrr 713 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → 𝑥 ∈ 𝑋) |
96 | 16 | clsss3 22118 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ Top ∧ 𝐵 ⊆ ∪ 𝑆)
→ ((cls‘𝑆)‘𝐵) ⊆ ∪ 𝑆) |
97 | 11, 15, 96 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘𝑆)‘𝐵) ⊆ ∪ 𝑆) |
98 | 97, 14 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘𝑆)‘𝐵) ⊆ 𝑌) |
99 | 98 | sselda 3917 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵)) → 𝑦 ∈ 𝑌) |
100 | 99 | adantrl 712 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → 𝑦 ∈ 𝑌) |
101 | 95, 100 | opelxpd 5618 |
. . . . . . . 8
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → 〈𝑥, 𝑦〉 ∈ (𝑋 × 𝑌)) |
102 | 101, 89 | eleqtrd 2841 |
. . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → 〈𝑥, 𝑦〉 ∈ ∪
(𝑅 ×t
𝑆)) |
103 | 27 | elcls 22132 |
. . . . . . 7
⊢ (((𝑅 ×t 𝑆) ∈ Top ∧ (𝐴 × 𝐵) ⊆ ∪
(𝑅 ×t
𝑆) ∧ 〈𝑥, 𝑦〉 ∈ ∪
(𝑅 ×t
𝑆)) → (〈𝑥, 𝑦〉 ∈ ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) ↔ ∀𝑢 ∈ (𝑅 ×t 𝑆)(〈𝑥, 𝑦〉 ∈ 𝑢 → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅))) |
104 | 85, 90, 102, 103 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → (〈𝑥, 𝑦〉 ∈ ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) ↔ ∀𝑢 ∈ (𝑅 ×t 𝑆)(〈𝑥, 𝑦〉 ∈ 𝑢 → (𝑢 ∩ (𝐴 × 𝐵)) ≠ ∅))) |
105 | 81, 104 | mpbird 256 |
. . . . 5
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) ∧ (𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵))) → 〈𝑥, 𝑦〉 ∈ ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵))) |
106 | 105 | ex 412 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((𝑥 ∈ ((cls‘𝑅)‘𝐴) ∧ 𝑦 ∈ ((cls‘𝑆)‘𝐵)) → 〈𝑥, 𝑦〉 ∈ ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)))) |
107 | 32, 106 | syl5bi 241 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → (〈𝑥, 𝑦〉 ∈ (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵)) → 〈𝑥, 𝑦〉 ∈ ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)))) |
108 | 31, 107 | relssdv 5687 |
. 2
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵)) ⊆ ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵))) |
109 | 29, 108 | eqssd 3934 |
1
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌)) → ((cls‘(𝑅 ×t 𝑆))‘(𝐴 × 𝐵)) = (((cls‘𝑅)‘𝐴) × ((cls‘𝑆)‘𝐵))) |