| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkop | Structured version Visualization version GIF version | ||
| Description: A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlkop | ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relwlk 29606 | . 2 ⊢ Rel (Walks‘𝐺) | |
| 2 | 1st2nd 8038 | . 2 ⊢ ((Rel (Walks‘𝐺) ∧ 𝑊 ∈ (Walks‘𝐺)) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4607 Rel wrel 5659 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 Walkscwlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 df-wlks 29579 |
| This theorem is referenced by: wlkcpr 29609 wlkeq 29614 clwlkcompbp 29764 clwlkclwwlkflem 29985 wlkl0 30348 |
| Copyright terms: Public domain | W3C validator |