MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkop Structured version   Visualization version   GIF version

Theorem wlkop 29664
Description: A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.)
Assertion
Ref Expression
wlkop (𝑊 ∈ (Walks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)

Proof of Theorem wlkop
StepHypRef Expression
1 relwlk 29662 . 2 Rel (Walks‘𝐺)
2 1st2nd 8080 . 2 ((Rel (Walks‘𝐺) ∧ 𝑊 ∈ (Walks‘𝐺)) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
31, 2mpan 689 1 (𝑊 ∈ (Walks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cop 4654  Rel wrel 5705  cfv 6573  1st c1st 8028  2nd c2nd 8029  Walkscwlks 29632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031  df-wlks 29635
This theorem is referenced by:  wlkcpr  29665  wlkeq  29670  clwlkcompbp  29818  clwlkclwwlkflem  30036  wlkl0  30399
  Copyright terms: Public domain W3C validator