![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkop | Structured version Visualization version GIF version |
Description: A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.) |
Ref | Expression |
---|---|
wlkop | ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relwlk 29566 | . 2 ⊢ Rel (Walks‘𝐺) | |
2 | 1st2nd 8055 | . 2 ⊢ ((Rel (Walks‘𝐺) ∧ 𝑊 ∈ (Walks‘𝐺)) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) | |
3 | 1, 2 | mpan 688 | 1 ⊢ (𝑊 ∈ (Walks‘𝐺) → 𝑊 = 〈(1st ‘𝑊), (2nd ‘𝑊)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cop 4639 Rel wrel 5689 ‘cfv 6556 1st c1st 8003 2nd c2nd 8004 Walkscwlks 29536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fv 6564 df-1st 8005 df-2nd 8006 df-wlks 29539 |
This theorem is referenced by: wlkcpr 29569 wlkeq 29574 clwlkcompbp 29722 clwlkclwwlkflem 29940 wlkl0 30303 |
Copyright terms: Public domain | W3C validator |