MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2 Structured version   Visualization version   GIF version

Theorem ovolicc2 25495
Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolicc2 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦   𝑦,𝑀   𝜑,𝑓,𝑦
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolicc2
Dummy variables 𝑔 𝑘 𝑡 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.m . . . . . 6 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 25448 . . . . 5 (𝑧𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))
4 unieq 4920 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → 𝑢 = ran ((,) ∘ 𝑓))
54sseq2d 4009 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → ((𝐴[,]𝐵) ⊆ 𝑢 ↔ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓)))
6 pweq 4618 . . . . . . . . . . . . . . 15 (𝑢 = ran ((,) ∘ 𝑓) → 𝒫 𝑢 = 𝒫 ran ((,) ∘ 𝑓))
76ineq1d 4209 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → (𝒫 𝑢 ∩ Fin) = (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
87rexeqdv 3315 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 ↔ ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
95, 8imbi12d 343 . . . . . . . . . . . 12 (𝑢 = ran ((,) ∘ 𝑓) → (((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣) ↔ ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
10 ovolicc.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 ovolicc.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 eqid 2725 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = (topGen‘ran (,))
13 eqid 2725 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
1412, 13icccmp 24785 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
1510, 11, 14syl2anc 582 . . . . . . . . . . . . . 14 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
16 retop 24722 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
17 iccssre 13441 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1810, 11, 17syl2anc 582 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
19 uniretop 24723 . . . . . . . . . . . . . . . 16 ℝ = (topGen‘ran (,))
2019cmpsub 23348 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
2116, 18, 20sylancr 585 . . . . . . . . . . . . . 14 (𝜑 → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
2215, 21mpbid 231 . . . . . . . . . . . . 13 (𝜑 → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
2322adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
24 ioof 13459 . . . . . . . . . . . . . . . . . . 19 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
25 ffn 6723 . . . . . . . . . . . . . . . . . . 19 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18 (,) Fn (ℝ* × ℝ*)
27 dffn3 6735 . . . . . . . . . . . . . . . . . 18 ((,) Fn (ℝ* × ℝ*) ↔ (,):(ℝ* × ℝ*)⟶ran (,))
2826, 27mpbi 229 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶ran (,)
29 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
30 elovolmlem 25447 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3129, 30sylib 217 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
32 inss2 4228 . . . . . . . . . . . . . . . . . . 19 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
33 rexpssxrxp 11291 . . . . . . . . . . . . . . . . . . 19 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3432, 33sstri 3986 . . . . . . . . . . . . . . . . . 18 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
35 fss 6739 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
3631, 34, 35sylancl 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
37 fco 6747 . . . . . . . . . . . . . . . . 17 (((,):(ℝ* × ℝ*)⟶ran (,) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
3828, 36, 37sylancr 585 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
3938adantrr 715 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((,) ∘ 𝑓):ℕ⟶ran (,))
4039frnd 6731 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ ran (,))
41 retopbas 24721 . . . . . . . . . . . . . . 15 ran (,) ∈ TopBases
42 bastg 22913 . . . . . . . . . . . . . . 15 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 ran (,) ⊆ (topGen‘ran (,))
4440, 43sstrdi 3989 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
45 fvex 6909 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ V
4645elpw2 5348 . . . . . . . . . . . . 13 (ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)) ↔ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
4744, 46sylibr 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)))
489, 23, 47rspcdva 3607 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
493, 48mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)
50 simprl 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
51 elin 3960 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5250, 51sylib 217 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5352simprd 494 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ Fin)
5452simpld 493 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓))
5554elpwid 4613 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ⊆ ran ((,) ∘ 𝑓))
5655sseld 3975 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣𝑡 ∈ ran ((,) ∘ 𝑓)))
5738ffnd 6724 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((,) ∘ 𝑓) Fn ℕ)
5857adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((,) ∘ 𝑓) Fn ℕ)
59 fvelrnb 6958 . . . . . . . . . . . . . . . . 17 (((,) ∘ 𝑓) Fn ℕ → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6058, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6156, 60sylibd 238 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣 → ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6261ralrimiv 3134 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡)
63 fveqeq2 6905 . . . . . . . . . . . . . . 15 (𝑘 = (𝑔𝑡) → ((((,) ∘ 𝑓)‘𝑘) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6463ac6sfi 9312 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6553, 62, 64syl2anc 582 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6610ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴 ∈ ℝ)
6711ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐵 ∈ ℝ)
68 ovolicc.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
6968ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴𝐵)
70 eqid 2725 . . . . . . . . . . . . . . . 16 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
7131adantr 479 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
72 simprll 777 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
73 simprlr 778 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐴[,]𝐵) ⊆ 𝑣)
74 simprrl 779 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑔:𝑣⟶ℕ)
75 simprrr 780 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡)
76 2fveq3 6901 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥 → (((,) ∘ 𝑓)‘(𝑔𝑡)) = (((,) ∘ 𝑓)‘(𝑔𝑥)))
77 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑡 = 𝑥)
7876, 77eqeq12d 2741 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → ((((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥))
7978rspccva 3605 . . . . . . . . . . . . . . . . 17 ((∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
8075, 79sylan 578 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) ∧ 𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
81 eqid 2725 . . . . . . . . . . . . . . . 16 {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} = {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
8266, 67, 69, 70, 71, 72, 73, 74, 80, 81ovolicc2lem5 25494 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
8382expr 455 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8483exlimdv 1928 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8565, 84mpd 15 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
8685rexlimdvaa 3145 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8786adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8849, 87mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
89 breq2 5153 . . . . . . . . 9 (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → ((𝐵𝐴) ≤ 𝑧 ↔ (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9088, 89syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧))
9190expr 455 . . . . . . 7 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧)))
9291impd 409 . . . . . 6 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
9392rexlimdva 3144 . . . . 5 (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
942, 93biimtrid 241 . . . 4 (𝜑 → (𝑧𝑀 → (𝐵𝐴) ≤ 𝑧))
9594ralrimiv 3134 . . 3 (𝜑 → ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧)
961ssrab3 4076 . . . 4 𝑀 ⊆ ℝ*
9711, 10resubcld 11674 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
9897rexrd 11296 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ*)
99 infxrgelb 13349 . . . 4 ((𝑀 ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
10096, 98, 99sylancr 585 . . 3 (𝜑 → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
10195, 100mpbird 256 . 2 (𝜑 → (𝐵𝐴) ≤ inf(𝑀, ℝ*, < ))
1021ovolval 25446 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
10318, 102syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
104101, 103breqtrrd 5177 1 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  cin 3943  wss 3944  c0 4322  𝒫 cpw 4604   cuni 4909   class class class wbr 5149   × cxp 5676  ran crn 5679  ccom 5682   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  Fincfn 8964  supcsup 9465  infcinf 9466  cr 11139  1c1 11141   + caddc 11143  *cxr 11279   < clt 11280  cle 11281  cmin 11476  cn 12245  (,)cioo 13359  [,]cicc 13362  seqcseq 14002  abscabs 15217  t crest 17405  topGenctg 17422  Topctop 22839  TopBasesctb 22892  Compccmp 23334  vol*covol 25435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-rest 17407  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-top 22840  df-topon 22857  df-bases 22893  df-cmp 23335  df-ovol 25437
This theorem is referenced by:  ovolicc  25496
  Copyright terms: Public domain W3C validator