MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicc2 Structured version   Visualization version   GIF version

Theorem ovolicc2 24591
Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ovolicc.1 (𝜑𝐴 ∈ ℝ)
ovolicc.2 (𝜑𝐵 ∈ ℝ)
ovolicc.3 (𝜑𝐴𝐵)
ovolicc2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolicc2 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦   𝑦,𝑀   𝜑,𝑓,𝑦
Allowed substitution hint:   𝑀(𝑓)

Proof of Theorem ovolicc2
Dummy variables 𝑔 𝑘 𝑡 𝑢 𝑣 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolicc2.m . . . . . 6 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
21elovolm 24544 . . . . 5 (𝑧𝑀 ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
3 simprr 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))
4 unieq 4847 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → 𝑢 = ran ((,) ∘ 𝑓))
54sseq2d 3949 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → ((𝐴[,]𝐵) ⊆ 𝑢 ↔ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓)))
6 pweq 4546 . . . . . . . . . . . . . . 15 (𝑢 = ran ((,) ∘ 𝑓) → 𝒫 𝑢 = 𝒫 ran ((,) ∘ 𝑓))
76ineq1d 4142 . . . . . . . . . . . . . 14 (𝑢 = ran ((,) ∘ 𝑓) → (𝒫 𝑢 ∩ Fin) = (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
87rexeqdv 3340 . . . . . . . . . . . . 13 (𝑢 = ran ((,) ∘ 𝑓) → (∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 ↔ ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
95, 8imbi12d 344 . . . . . . . . . . . 12 (𝑢 = ran ((,) ∘ 𝑓) → (((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣) ↔ ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
10 ovolicc.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
11 ovolicc.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
12 eqid 2738 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = (topGen‘ran (,))
13 eqid 2738 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
1412, 13icccmp 23894 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
1510, 11, 14syl2anc 583 . . . . . . . . . . . . . 14 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp)
16 retop 23831 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
17 iccssre 13090 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
1810, 11, 17syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
19 uniretop 23832 . . . . . . . . . . . . . . . 16 ℝ = (topGen‘ran (,))
2019cmpsub 22459 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
2116, 18, 20sylancr 586 . . . . . . . . . . . . . 14 (𝜑 → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Comp ↔ ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)))
2215, 21mpbid 231 . . . . . . . . . . . . 13 (𝜑 → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
2322adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∀𝑢 ∈ 𝒫 (topGen‘ran (,))((𝐴[,]𝐵) ⊆ 𝑢 → ∃𝑣 ∈ (𝒫 𝑢 ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
24 ioof 13108 . . . . . . . . . . . . . . . . . . 19 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
25 ffn 6584 . . . . . . . . . . . . . . . . . . 19 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . . 18 (,) Fn (ℝ* × ℝ*)
27 dffn3 6597 . . . . . . . . . . . . . . . . . 18 ((,) Fn (ℝ* × ℝ*) ↔ (,):(ℝ* × ℝ*)⟶ran (,))
2826, 27mpbi 229 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶ran (,)
29 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
30 elovolmlem 24543 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3129, 30sylib 217 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
32 inss2 4160 . . . . . . . . . . . . . . . . . . 19 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
33 rexpssxrxp 10951 . . . . . . . . . . . . . . . . . . 19 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3432, 33sstri 3926 . . . . . . . . . . . . . . . . . 18 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
35 fss 6601 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
3631, 34, 35sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 𝑓:ℕ⟶(ℝ* × ℝ*))
37 fco 6608 . . . . . . . . . . . . . . . . 17 (((,):(ℝ* × ℝ*)⟶ran (,) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
3828, 36, 37sylancr 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((,) ∘ 𝑓):ℕ⟶ran (,))
3938adantrr 713 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((,) ∘ 𝑓):ℕ⟶ran (,))
4039frnd 6592 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ ran (,))
41 retopbas 23830 . . . . . . . . . . . . . . 15 ran (,) ∈ TopBases
42 bastg 22024 . . . . . . . . . . . . . . 15 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
4341, 42ax-mp 5 . . . . . . . . . . . . . 14 ran (,) ⊆ (topGen‘ran (,))
4440, 43sstrdi 3929 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
45 fvex 6769 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ V
4645elpw2 5264 . . . . . . . . . . . . 13 (ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)) ↔ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,)))
4744, 46sylibr 233 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ran ((,) ∘ 𝑓) ∈ 𝒫 (topGen‘ran (,)))
489, 23, 47rspcdva 3554 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣))
493, 48mpd 15 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → ∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣)
50 simprl 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
51 elin 3899 . . . . . . . . . . . . . . . 16 (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ↔ (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5250, 51sylib 217 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓) ∧ 𝑣 ∈ Fin))
5352simprd 495 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ Fin)
5452simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ∈ 𝒫 ran ((,) ∘ 𝑓))
5554elpwid 4541 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → 𝑣 ⊆ ran ((,) ∘ 𝑓))
5655sseld 3916 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣𝑡 ∈ ran ((,) ∘ 𝑓)))
5738ffnd 6585 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((,) ∘ 𝑓) Fn ℕ)
5857adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((,) ∘ 𝑓) Fn ℕ)
59 fvelrnb 6812 . . . . . . . . . . . . . . . . 17 (((,) ∘ 𝑓) Fn ℕ → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6058, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡 ∈ ran ((,) ∘ 𝑓) ↔ ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6156, 60sylibd 238 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝑡𝑣 → ∃𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡))
6261ralrimiv 3106 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡)
63 fveqeq2 6765 . . . . . . . . . . . . . . 15 (𝑘 = (𝑔𝑡) → ((((,) ∘ 𝑓)‘𝑘) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6463ac6sfi 8988 . . . . . . . . . . . . . 14 ((𝑣 ∈ Fin ∧ ∀𝑡𝑣𝑘 ∈ ℕ (((,) ∘ 𝑓)‘𝑘) = 𝑡) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6553, 62, 64syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))
6610ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴 ∈ ℝ)
6711ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐵 ∈ ℝ)
68 ovolicc.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
6968ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝐴𝐵)
70 eqid 2738 . . . . . . . . . . . . . . . 16 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
7131adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
72 simprll 775 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin))
73 simprlr 776 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐴[,]𝐵) ⊆ 𝑣)
74 simprrl 777 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → 𝑔:𝑣⟶ℕ)
75 simprrr 778 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡)
76 2fveq3 6761 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥 → (((,) ∘ 𝑓)‘(𝑔𝑡)) = (((,) ∘ 𝑓)‘(𝑔𝑥)))
77 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑥𝑡 = 𝑥)
7876, 77eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑥 → ((((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡 ↔ (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥))
7978rspccva 3551 . . . . . . . . . . . . . . . . 17 ((∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
8075, 79sylan 579 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) ∧ 𝑥𝑣) → (((,) ∘ 𝑓)‘(𝑔𝑥)) = 𝑥)
81 eqid 2738 . . . . . . . . . . . . . . . 16 {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅} = {𝑢𝑣 ∣ (𝑢 ∩ (𝐴[,]𝐵)) ≠ ∅}
8266, 67, 69, 70, 71, 72, 73, 74, 80, 81ovolicc2lem5 24590 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ ((𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣) ∧ (𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
8382expr 456 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → ((𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8483exlimdv 1937 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (∃𝑔(𝑔:𝑣⟶ℕ ∧ ∀𝑡𝑣 (((,) ∘ 𝑓)‘(𝑔𝑡)) = 𝑡) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8565, 84mpd 15 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) ∧ (𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin) ∧ (𝐴[,]𝐵) ⊆ 𝑣)) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
8685rexlimdvaa 3213 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8786adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (∃𝑣 ∈ (𝒫 ran ((,) ∘ 𝑓) ∩ Fin)(𝐴[,]𝐵) ⊆ 𝑣 → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
8849, 87mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
89 breq2 5074 . . . . . . . . 9 (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → ((𝐵𝐴) ≤ 𝑧 ↔ (𝐵𝐴) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )))
9088, 89syl5ibrcom 246 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓))) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧))
9190expr 456 . . . . . . 7 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) → (𝐵𝐴) ≤ 𝑧)))
9291impd 410 . . . . . 6 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
9392rexlimdva 3212 . . . . 5 (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)((𝐴[,]𝐵) ⊆ ran ((,) ∘ 𝑓) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) → (𝐵𝐴) ≤ 𝑧))
942, 93syl5bi 241 . . . 4 (𝜑 → (𝑧𝑀 → (𝐵𝐴) ≤ 𝑧))
9594ralrimiv 3106 . . 3 (𝜑 → ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧)
961ssrab3 4011 . . . 4 𝑀 ⊆ ℝ*
9711, 10resubcld 11333 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
9897rexrd 10956 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ*)
99 infxrgelb 12998 . . . 4 ((𝑀 ⊆ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
10096, 98, 99sylancr 586 . . 3 (𝜑 → ((𝐵𝐴) ≤ inf(𝑀, ℝ*, < ) ↔ ∀𝑧𝑀 (𝐵𝐴) ≤ 𝑧))
10195, 100mpbird 256 . 2 (𝜑 → (𝐵𝐴) ≤ inf(𝑀, ℝ*, < ))
1021ovolval 24542 . . 3 ((𝐴[,]𝐵) ⊆ ℝ → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
10318, 102syl 17 . 2 (𝜑 → (vol*‘(𝐴[,]𝐵)) = inf(𝑀, ℝ*, < ))
104101, 103breqtrrd 5098 1 (𝜑 → (𝐵𝐴) ≤ (vol*‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   class class class wbr 5070   × cxp 5578  ran crn 5581  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  supcsup 9129  infcinf 9130  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  (,)cioo 13008  [,]cicc 13011  seqcseq 13649  abscabs 14873  t crest 17048  topGenctg 17065  Topctop 21950  TopBasesctb 22003  Compccmp 22445  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533
This theorem is referenced by:  ovolicc  24592
  Copyright terms: Public domain W3C validator