MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsre Structured version   Visualization version   GIF version

Theorem xrsdsre 24706
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsre (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))

Proof of Theorem xrsdsre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrsxmet.1 . . . . 5 𝐷 = (dist‘ℝ*𝑠)
21xrsdsreval 21335 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
3 ovres 7558 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥𝐷𝑦))
4 eqid 2730 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54remetdval 24684 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) = (abs‘(𝑥𝑦)))
62, 3, 53eqtr4d 2775 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦))
76rgen2 3178 . 2 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)
81xrsxmet 24705 . . . . 5 𝐷 ∈ (∞Met‘ℝ*)
9 xmetf 24224 . . . . 5 (𝐷 ∈ (∞Met‘ℝ*) → 𝐷:(ℝ* × ℝ*)⟶ℝ*)
10 ffn 6691 . . . . 5 (𝐷:(ℝ* × ℝ*)⟶ℝ*𝐷 Fn (ℝ* × ℝ*))
118, 9, 10mp2b 10 . . . 4 𝐷 Fn (ℝ* × ℝ*)
12 rexpssxrxp 11226 . . . 4 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
13 fnssres 6644 . . . 4 ((𝐷 Fn (ℝ* × ℝ*) ∧ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) → (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
1411, 12, 13mp2an 692 . . 3 (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
15 cnmet 24666 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
16 metf 24225 . . . . 5 ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
17 ffn 6691 . . . . 5 ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ))
1815, 16, 17mp2b 10 . . . 4 (abs ∘ − ) Fn (ℂ × ℂ)
19 ax-resscn 11132 . . . . 5 ℝ ⊆ ℂ
20 xpss12 5656 . . . . 5 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
2119, 19, 20mp2an 692 . . . 4 (ℝ × ℝ) ⊆ (ℂ × ℂ)
22 fnssres 6644 . . . 4 (((abs ∘ − ) Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
2318, 21, 22mp2an 692 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
24 eqfnov2 7522 . . 3 (((𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) → ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)))
2514, 23, 24mp2an 692 . 2 ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦))
267, 25mpbir 231 1 (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917   × cxp 5639  cres 5643  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  *cxr 11214  cmin 11412  abscabs 15207  distcds 17236  *𝑠cxrs 17470  ∞Metcxmet 21256  Metcmet 21257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-tset 17246  df-ple 17247  df-ds 17249  df-xrs 17472  df-xmet 21264  df-met 21265
This theorem is referenced by:  xrsmopn  24708  metdscn2  24753
  Copyright terms: Public domain W3C validator