![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsdsre | Structured version Visualization version GIF version |
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | β’ π· = (distββ*π ) |
Ref | Expression |
---|---|
xrsdsre | β’ (π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrsxmet.1 | . . . . 5 β’ π· = (distββ*π ) | |
2 | 1 | xrsdsreval 21349 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯π·π¦) = (absβ(π₯ β π¦))) |
3 | ovres 7591 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯(π· βΎ (β Γ β))π¦) = (π₯π·π¦)) | |
4 | eqid 2727 | . . . . 5 β’ ((abs β β ) βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) | |
5 | 4 | remetdval 24723 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯((abs β β ) βΎ (β Γ β))π¦) = (absβ(π₯ β π¦))) |
6 | 2, 3, 5 | 3eqtr4d 2777 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦)) |
7 | 6 | rgen2 3193 | . 2 β’ βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦) |
8 | 1 | xrsxmet 24743 | . . . . 5 β’ π· β (βMetββ*) |
9 | xmetf 24253 | . . . . 5 β’ (π· β (βMetββ*) β π·:(β* Γ β*)βΆβ*) | |
10 | ffn 6725 | . . . . 5 β’ (π·:(β* Γ β*)βΆβ* β π· Fn (β* Γ β*)) | |
11 | 8, 9, 10 | mp2b 10 | . . . 4 β’ π· Fn (β* Γ β*) |
12 | rexpssxrxp 11295 | . . . 4 β’ (β Γ β) β (β* Γ β*) | |
13 | fnssres 6681 | . . . 4 β’ ((π· Fn (β* Γ β*) β§ (β Γ β) β (β* Γ β*)) β (π· βΎ (β Γ β)) Fn (β Γ β)) | |
14 | 11, 12, 13 | mp2an 690 | . . 3 β’ (π· βΎ (β Γ β)) Fn (β Γ β) |
15 | cnmet 24706 | . . . . 5 β’ (abs β β ) β (Metββ) | |
16 | metf 24254 | . . . . 5 β’ ((abs β β ) β (Metββ) β (abs β β ):(β Γ β)βΆβ) | |
17 | ffn 6725 | . . . . 5 β’ ((abs β β ):(β Γ β)βΆβ β (abs β β ) Fn (β Γ β)) | |
18 | 15, 16, 17 | mp2b 10 | . . . 4 β’ (abs β β ) Fn (β Γ β) |
19 | ax-resscn 11201 | . . . . 5 β’ β β β | |
20 | xpss12 5695 | . . . . 5 β’ ((β β β β§ β β β) β (β Γ β) β (β Γ β)) | |
21 | 19, 19, 20 | mp2an 690 | . . . 4 β’ (β Γ β) β (β Γ β) |
22 | fnssres 6681 | . . . 4 β’ (((abs β β ) Fn (β Γ β) β§ (β Γ β) β (β Γ β)) β ((abs β β ) βΎ (β Γ β)) Fn (β Γ β)) | |
23 | 18, 21, 22 | mp2an 690 | . . 3 β’ ((abs β β ) βΎ (β Γ β)) Fn (β Γ β) |
24 | eqfnov2 7555 | . . 3 β’ (((π· βΎ (β Γ β)) Fn (β Γ β) β§ ((abs β β ) βΎ (β Γ β)) Fn (β Γ β)) β ((π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) β βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦))) | |
25 | 14, 23, 24 | mp2an 690 | . 2 β’ ((π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) β βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦)) |
26 | 7, 25 | mpbir 230 | 1 β’ (π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwral 3057 β wss 3947 Γ cxp 5678 βΎ cres 5682 β ccom 5684 Fn wfn 6546 βΆwf 6547 βcfv 6551 (class class class)co 7424 βcc 11142 βcr 11143 β*cxr 11283 β cmin 11480 abscabs 15219 distcds 17247 β*π cxrs 17487 βMetcxmet 21269 Metcmet 21270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-rp 13013 df-xneg 13130 df-xadd 13131 df-icc 13369 df-fz 13523 df-seq 14005 df-exp 14065 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-struct 17121 df-slot 17156 df-ndx 17168 df-base 17186 df-plusg 17251 df-mulr 17252 df-tset 17257 df-ple 17258 df-ds 17260 df-xrs 17489 df-xmet 21277 df-met 21278 |
This theorem is referenced by: xrsmopn 24746 metdscn2 24791 |
Copyright terms: Public domain | W3C validator |