![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsdsre | Structured version Visualization version GIF version |
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | β’ π· = (distββ*π ) |
Ref | Expression |
---|---|
xrsdsre | β’ (π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrsxmet.1 | . . . . 5 β’ π· = (distββ*π ) | |
2 | 1 | xrsdsreval 20989 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯π·π¦) = (absβ(π₯ β π¦))) |
3 | ovres 7572 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯(π· βΎ (β Γ β))π¦) = (π₯π·π¦)) | |
4 | eqid 2732 | . . . . 5 β’ ((abs β β ) βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) | |
5 | 4 | remetdval 24304 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯((abs β β ) βΎ (β Γ β))π¦) = (absβ(π₯ β π¦))) |
6 | 2, 3, 5 | 3eqtr4d 2782 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦)) |
7 | 6 | rgen2 3197 | . 2 β’ βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦) |
8 | 1 | xrsxmet 24324 | . . . . 5 β’ π· β (βMetββ*) |
9 | xmetf 23834 | . . . . 5 β’ (π· β (βMetββ*) β π·:(β* Γ β*)βΆβ*) | |
10 | ffn 6717 | . . . . 5 β’ (π·:(β* Γ β*)βΆβ* β π· Fn (β* Γ β*)) | |
11 | 8, 9, 10 | mp2b 10 | . . . 4 β’ π· Fn (β* Γ β*) |
12 | rexpssxrxp 11258 | . . . 4 β’ (β Γ β) β (β* Γ β*) | |
13 | fnssres 6673 | . . . 4 β’ ((π· Fn (β* Γ β*) β§ (β Γ β) β (β* Γ β*)) β (π· βΎ (β Γ β)) Fn (β Γ β)) | |
14 | 11, 12, 13 | mp2an 690 | . . 3 β’ (π· βΎ (β Γ β)) Fn (β Γ β) |
15 | cnmet 24287 | . . . . 5 β’ (abs β β ) β (Metββ) | |
16 | metf 23835 | . . . . 5 β’ ((abs β β ) β (Metββ) β (abs β β ):(β Γ β)βΆβ) | |
17 | ffn 6717 | . . . . 5 β’ ((abs β β ):(β Γ β)βΆβ β (abs β β ) Fn (β Γ β)) | |
18 | 15, 16, 17 | mp2b 10 | . . . 4 β’ (abs β β ) Fn (β Γ β) |
19 | ax-resscn 11166 | . . . . 5 β’ β β β | |
20 | xpss12 5691 | . . . . 5 β’ ((β β β β§ β β β) β (β Γ β) β (β Γ β)) | |
21 | 19, 19, 20 | mp2an 690 | . . . 4 β’ (β Γ β) β (β Γ β) |
22 | fnssres 6673 | . . . 4 β’ (((abs β β ) Fn (β Γ β) β§ (β Γ β) β (β Γ β)) β ((abs β β ) βΎ (β Γ β)) Fn (β Γ β)) | |
23 | 18, 21, 22 | mp2an 690 | . . 3 β’ ((abs β β ) βΎ (β Γ β)) Fn (β Γ β) |
24 | eqfnov2 7538 | . . 3 β’ (((π· βΎ (β Γ β)) Fn (β Γ β) β§ ((abs β β ) βΎ (β Γ β)) Fn (β Γ β)) β ((π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) β βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦))) | |
25 | 14, 23, 24 | mp2an 690 | . 2 β’ ((π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) β βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦)) |
26 | 7, 25 | mpbir 230 | 1 β’ (π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β wss 3948 Γ cxp 5674 βΎ cres 5678 β ccom 5680 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7408 βcc 11107 βcr 11108 β*cxr 11246 β cmin 11443 abscabs 15180 distcds 17205 β*π cxrs 17445 βMetcxmet 20928 Metcmet 20929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-xneg 13091 df-xadd 13092 df-icc 13330 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-ds 17218 df-xrs 17447 df-xmet 20936 df-met 20937 |
This theorem is referenced by: xrsmopn 24327 metdscn2 24372 |
Copyright terms: Public domain | W3C validator |