| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsdsre | Structured version Visualization version GIF version | ||
| Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
| Ref | Expression |
|---|---|
| xrsdsre | ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
| 2 | 1 | xrsdsreval 21318 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥 − 𝑦))) |
| 3 | ovres 7515 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥𝐷𝑦)) | |
| 4 | eqid 2729 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 5 | 4 | remetdval 24675 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) = (abs‘(𝑥 − 𝑦))) |
| 6 | 2, 3, 5 | 3eqtr4d 2774 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)) |
| 7 | 6 | rgen2 3169 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) |
| 8 | 1 | xrsxmet 24696 | . . . . 5 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
| 9 | xmetf 24215 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → 𝐷:(ℝ* × ℝ*)⟶ℝ*) | |
| 10 | ffn 6652 | . . . . 5 ⊢ (𝐷:(ℝ* × ℝ*)⟶ℝ* → 𝐷 Fn (ℝ* × ℝ*)) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ 𝐷 Fn (ℝ* × ℝ*) |
| 12 | rexpssxrxp 11160 | . . . 4 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
| 13 | fnssres 6605 | . . . 4 ⊢ ((𝐷 Fn (ℝ* × ℝ*) ∧ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) → (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . 3 ⊢ (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
| 15 | cnmet 24657 | . . . . 5 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 16 | metf 24216 | . . . . 5 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 17 | ffn 6652 | . . . . 5 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . 4 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
| 19 | ax-resscn 11066 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 20 | xpss12 5634 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
| 21 | 19, 19, 20 | mp2an 692 | . . . 4 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| 22 | fnssres 6605 | . . . 4 ⊢ (((abs ∘ − ) Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 23 | 18, 21, 22 | mp2an 692 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
| 24 | eqfnov2 7479 | . . 3 ⊢ (((𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) → ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦))) | |
| 25 | 14, 23, 24 | mp2an 692 | . 2 ⊢ ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)) |
| 26 | 7, 25 | mpbir 231 | 1 ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 × cxp 5617 ↾ cres 5621 ∘ ccom 5623 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 ℝ*cxr 11148 − cmin 11347 abscabs 15141 distcds 17170 ℝ*𝑠cxrs 17404 ∞Metcxmet 21246 Metcmet 21247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-xneg 13014 df-xadd 13015 df-icc 13255 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-xrs 17406 df-xmet 21254 df-met 21255 |
| This theorem is referenced by: xrsmopn 24699 metdscn2 24744 |
| Copyright terms: Public domain | W3C validator |