| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsdsre | Structured version Visualization version GIF version | ||
| Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
| Ref | Expression |
|---|---|
| xrsdsre | ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
| 2 | 1 | xrsdsreval 21335 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥 − 𝑦))) |
| 3 | ovres 7558 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥𝐷𝑦)) | |
| 4 | eqid 2730 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 5 | 4 | remetdval 24684 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) = (abs‘(𝑥 − 𝑦))) |
| 6 | 2, 3, 5 | 3eqtr4d 2775 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)) |
| 7 | 6 | rgen2 3178 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) |
| 8 | 1 | xrsxmet 24705 | . . . . 5 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
| 9 | xmetf 24224 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → 𝐷:(ℝ* × ℝ*)⟶ℝ*) | |
| 10 | ffn 6691 | . . . . 5 ⊢ (𝐷:(ℝ* × ℝ*)⟶ℝ* → 𝐷 Fn (ℝ* × ℝ*)) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ 𝐷 Fn (ℝ* × ℝ*) |
| 12 | rexpssxrxp 11226 | . . . 4 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
| 13 | fnssres 6644 | . . . 4 ⊢ ((𝐷 Fn (ℝ* × ℝ*) ∧ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) → (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . 3 ⊢ (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
| 15 | cnmet 24666 | . . . . 5 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
| 16 | metf 24225 | . . . . 5 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
| 17 | ffn 6691 | . . . . 5 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . 4 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
| 19 | ax-resscn 11132 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 20 | xpss12 5656 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
| 21 | 19, 19, 20 | mp2an 692 | . . . 4 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| 22 | fnssres 6644 | . . . 4 ⊢ (((abs ∘ − ) Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 23 | 18, 21, 22 | mp2an 692 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
| 24 | eqfnov2 7522 | . . 3 ⊢ (((𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) → ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦))) | |
| 25 | 14, 23, 24 | mp2an 692 | . 2 ⊢ ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)) |
| 26 | 7, 25 | mpbir 231 | 1 ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 ℝ*cxr 11214 − cmin 11412 abscabs 15207 distcds 17236 ℝ*𝑠cxrs 17470 ∞Metcxmet 21256 Metcmet 21257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-xneg 13079 df-xadd 13080 df-icc 13320 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-xrs 17472 df-xmet 21264 df-met 21265 |
| This theorem is referenced by: xrsmopn 24708 metdscn2 24753 |
| Copyright terms: Public domain | W3C validator |