![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsdsre | Structured version Visualization version GIF version |
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | β’ π· = (distββ*π ) |
Ref | Expression |
---|---|
xrsdsre | β’ (π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrsxmet.1 | . . . . 5 β’ π· = (distββ*π ) | |
2 | 1 | xrsdsreval 21301 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯π·π¦) = (absβ(π₯ β π¦))) |
3 | ovres 7569 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯(π· βΎ (β Γ β))π¦) = (π₯π·π¦)) | |
4 | eqid 2726 | . . . . 5 β’ ((abs β β ) βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) | |
5 | 4 | remetdval 24656 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯((abs β β ) βΎ (β Γ β))π¦) = (absβ(π₯ β π¦))) |
6 | 2, 3, 5 | 3eqtr4d 2776 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦)) |
7 | 6 | rgen2 3191 | . 2 β’ βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦) |
8 | 1 | xrsxmet 24676 | . . . . 5 β’ π· β (βMetββ*) |
9 | xmetf 24186 | . . . . 5 β’ (π· β (βMetββ*) β π·:(β* Γ β*)βΆβ*) | |
10 | ffn 6710 | . . . . 5 β’ (π·:(β* Γ β*)βΆβ* β π· Fn (β* Γ β*)) | |
11 | 8, 9, 10 | mp2b 10 | . . . 4 β’ π· Fn (β* Γ β*) |
12 | rexpssxrxp 11260 | . . . 4 β’ (β Γ β) β (β* Γ β*) | |
13 | fnssres 6666 | . . . 4 β’ ((π· Fn (β* Γ β*) β§ (β Γ β) β (β* Γ β*)) β (π· βΎ (β Γ β)) Fn (β Γ β)) | |
14 | 11, 12, 13 | mp2an 689 | . . 3 β’ (π· βΎ (β Γ β)) Fn (β Γ β) |
15 | cnmet 24639 | . . . . 5 β’ (abs β β ) β (Metββ) | |
16 | metf 24187 | . . . . 5 β’ ((abs β β ) β (Metββ) β (abs β β ):(β Γ β)βΆβ) | |
17 | ffn 6710 | . . . . 5 β’ ((abs β β ):(β Γ β)βΆβ β (abs β β ) Fn (β Γ β)) | |
18 | 15, 16, 17 | mp2b 10 | . . . 4 β’ (abs β β ) Fn (β Γ β) |
19 | ax-resscn 11166 | . . . . 5 β’ β β β | |
20 | xpss12 5684 | . . . . 5 β’ ((β β β β§ β β β) β (β Γ β) β (β Γ β)) | |
21 | 19, 19, 20 | mp2an 689 | . . . 4 β’ (β Γ β) β (β Γ β) |
22 | fnssres 6666 | . . . 4 β’ (((abs β β ) Fn (β Γ β) β§ (β Γ β) β (β Γ β)) β ((abs β β ) βΎ (β Γ β)) Fn (β Γ β)) | |
23 | 18, 21, 22 | mp2an 689 | . . 3 β’ ((abs β β ) βΎ (β Γ β)) Fn (β Γ β) |
24 | eqfnov2 7534 | . . 3 β’ (((π· βΎ (β Γ β)) Fn (β Γ β) β§ ((abs β β ) βΎ (β Γ β)) Fn (β Γ β)) β ((π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) β βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦))) | |
25 | 14, 23, 24 | mp2an 689 | . 2 β’ ((π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) β βπ₯ β β βπ¦ β β (π₯(π· βΎ (β Γ β))π¦) = (π₯((abs β β ) βΎ (β Γ β))π¦)) |
26 | 7, 25 | mpbir 230 | 1 β’ (π· βΎ (β Γ β)) = ((abs β β ) βΎ (β Γ β)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3055 β wss 3943 Γ cxp 5667 βΎ cres 5671 β ccom 5673 Fn wfn 6531 βΆwf 6532 βcfv 6536 (class class class)co 7404 βcc 11107 βcr 11108 β*cxr 11248 β cmin 11445 abscabs 15185 distcds 17213 β*π cxrs 17453 βMetcxmet 21221 Metcmet 21222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-xneg 13095 df-xadd 13096 df-icc 13334 df-fz 13488 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-tset 17223 df-ple 17224 df-ds 17226 df-xrs 17455 df-xmet 21229 df-met 21230 |
This theorem is referenced by: xrsmopn 24679 metdscn2 24724 |
Copyright terms: Public domain | W3C validator |