MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsre Structured version   Visualization version   GIF version

Theorem xrsdsre 24846
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsre (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))

Proof of Theorem xrsdsre
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrsxmet.1 . . . . 5 𝐷 = (dist‘ℝ*𝑠)
21xrsdsreval 21447 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
3 ovres 7599 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥𝐷𝑦))
4 eqid 2735 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54remetdval 24825 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) = (abs‘(𝑥𝑦)))
62, 3, 53eqtr4d 2785 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦))
76rgen2 3197 . 2 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)
81xrsxmet 24845 . . . . 5 𝐷 ∈ (∞Met‘ℝ*)
9 xmetf 24355 . . . . 5 (𝐷 ∈ (∞Met‘ℝ*) → 𝐷:(ℝ* × ℝ*)⟶ℝ*)
10 ffn 6737 . . . . 5 (𝐷:(ℝ* × ℝ*)⟶ℝ*𝐷 Fn (ℝ* × ℝ*))
118, 9, 10mp2b 10 . . . 4 𝐷 Fn (ℝ* × ℝ*)
12 rexpssxrxp 11304 . . . 4 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
13 fnssres 6692 . . . 4 ((𝐷 Fn (ℝ* × ℝ*) ∧ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) → (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
1411, 12, 13mp2an 692 . . 3 (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
15 cnmet 24808 . . . . 5 (abs ∘ − ) ∈ (Met‘ℂ)
16 metf 24356 . . . . 5 ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
17 ffn 6737 . . . . 5 ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ))
1815, 16, 17mp2b 10 . . . 4 (abs ∘ − ) Fn (ℂ × ℂ)
19 ax-resscn 11210 . . . . 5 ℝ ⊆ ℂ
20 xpss12 5704 . . . . 5 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
2119, 19, 20mp2an 692 . . . 4 (ℝ × ℝ) ⊆ (ℂ × ℂ)
22 fnssres 6692 . . . 4 (((abs ∘ − ) Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
2318, 21, 22mp2an 692 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
24 eqfnov2 7563 . . 3 (((𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) → ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)))
2514, 23, 24mp2an 692 . 2 ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦))
267, 25mpbir 231 1 (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963   × cxp 5687  cres 5691  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  *cxr 11292  cmin 11490  abscabs 15270  distcds 17307  *𝑠cxrs 17547  ∞Metcxmet 21367  Metcmet 21368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-xneg 13152  df-xadd 13153  df-icc 13391  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-tset 17317  df-ple 17318  df-ds 17320  df-xrs 17549  df-xmet 21375  df-met 21376
This theorem is referenced by:  xrsmopn  24848  metdscn2  24893
  Copyright terms: Public domain W3C validator