Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrsdsre | Structured version Visualization version GIF version |
Description: The metric on the extended reals coincides with the usual metric on the reals. (Contributed by Mario Carneiro, 4-Sep-2015.) |
Ref | Expression |
---|---|
xrsxmet.1 | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xrsdsre | ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrsxmet.1 | . . . . 5 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
2 | 1 | xrsdsreval 20555 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥 − 𝑦))) |
3 | ovres 7416 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥𝐷𝑦)) | |
4 | eqid 2738 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
5 | 4 | remetdval 23858 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) = (abs‘(𝑥 − 𝑦))) |
6 | 2, 3, 5 | 3eqtr4d 2788 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)) |
7 | 6 | rgen2 3126 | . 2 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦) |
8 | 1 | xrsxmet 23878 | . . . . 5 ⊢ 𝐷 ∈ (∞Met‘ℝ*) |
9 | xmetf 23390 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘ℝ*) → 𝐷:(ℝ* × ℝ*)⟶ℝ*) | |
10 | ffn 6584 | . . . . 5 ⊢ (𝐷:(ℝ* × ℝ*)⟶ℝ* → 𝐷 Fn (ℝ* × ℝ*)) | |
11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ 𝐷 Fn (ℝ* × ℝ*) |
12 | rexpssxrxp 10951 | . . . 4 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
13 | fnssres 6539 | . . . 4 ⊢ ((𝐷 Fn (ℝ* × ℝ*) ∧ (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) → (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
14 | 11, 12, 13 | mp2an 688 | . . 3 ⊢ (𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
15 | cnmet 23841 | . . . . 5 ⊢ (abs ∘ − ) ∈ (Met‘ℂ) | |
16 | metf 23391 | . . . . 5 ⊢ ((abs ∘ − ) ∈ (Met‘ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ) | |
17 | ffn 6584 | . . . . 5 ⊢ ((abs ∘ − ):(ℂ × ℂ)⟶ℝ → (abs ∘ − ) Fn (ℂ × ℂ)) | |
18 | 15, 16, 17 | mp2b 10 | . . . 4 ⊢ (abs ∘ − ) Fn (ℂ × ℂ) |
19 | ax-resscn 10859 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
20 | xpss12 5595 | . . . . 5 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
21 | 19, 19, 20 | mp2an 688 | . . . 4 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
22 | fnssres 6539 | . . . 4 ⊢ (((abs ∘ − ) Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
23 | 18, 21, 22 | mp2an 688 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
24 | eqfnov2 7382 | . . 3 ⊢ (((𝐷 ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ∧ ((abs ∘ − ) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) → ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦))) | |
25 | 14, 23, 24 | mp2an 688 | . 2 ⊢ ((𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥(𝐷 ↾ (ℝ × ℝ))𝑦) = (𝑥((abs ∘ − ) ↾ (ℝ × ℝ))𝑦)) |
26 | 7, 25 | mpbir 230 | 1 ⊢ (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ℝ*cxr 10939 − cmin 11135 abscabs 14873 distcds 16897 ℝ*𝑠cxrs 17128 ∞Metcxmet 20495 Metcmet 20496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-xneg 12777 df-xadd 12778 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-xrs 17130 df-xmet 20503 df-met 20504 |
This theorem is referenced by: xrsmopn 23881 metdscn2 23926 |
Copyright terms: Public domain | W3C validator |