Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ([,]‘𝑧) = ([,]‘𝑤)) |
2 | 1 | sseq1d 3952 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴)) |
3 | 2 | elrab 3624 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (𝑤 ∈ ran 𝐹 ∧ ([,]‘𝑤) ⊆ 𝐴)) |
4 | | simprr 770 |
. . . . . . . 8
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ (𝑤 ∈ ran 𝐹 ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ⊆ 𝐴) |
5 | | fvex 6787 |
. . . . . . . . 9
⊢
([,]‘𝑤) ∈
V |
6 | 5 | elpw 4537 |
. . . . . . . 8
⊢
(([,]‘𝑤)
∈ 𝒫 𝐴 ↔
([,]‘𝑤) ⊆ 𝐴) |
7 | 4, 6 | sylibr 233 |
. . . . . . 7
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ (𝑤 ∈ ran 𝐹 ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ∈ 𝒫 𝐴) |
8 | 3, 7 | sylan2b 594 |
. . . . . 6
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) → ([,]‘𝑤) ∈ 𝒫 𝐴) |
9 | 8 | ralrimiva 3103 |
. . . . 5
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ∀𝑤 ∈
{𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴) |
10 | | iccf 13180 |
. . . . . . 7
⊢
[,]:(ℝ* × ℝ*)⟶𝒫
ℝ* |
11 | | ffun 6603 |
. . . . . . 7
⊢
([,]:(ℝ* × ℝ*)⟶𝒫
ℝ* → Fun [,]) |
12 | 10, 11 | ax-mp 5 |
. . . . . 6
⊢ Fun
[,] |
13 | | ssrab2 4013 |
. . . . . . . 8
⊢ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ ran 𝐹 |
14 | | dyadmbl.1 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
15 | 14 | dyadf 24755 |
. . . . . . . . . 10
⊢ 𝐹:(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ ×
ℝ)) |
16 | | frn 6607 |
. . . . . . . . . 10
⊢ (𝐹:(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran
𝐹 ⊆ ( ≤ ∩
(ℝ × ℝ))) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . 9
⊢ ran 𝐹 ⊆ ( ≤ ∩ (ℝ
× ℝ)) |
18 | | inss2 4163 |
. . . . . . . . . 10
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
19 | | rexpssxrxp 11020 |
. . . . . . . . . 10
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
20 | 18, 19 | sstri 3930 |
. . . . . . . . 9
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ* ×
ℝ*) |
21 | 17, 20 | sstri 3930 |
. . . . . . . 8
⊢ ran 𝐹 ⊆ (ℝ*
× ℝ*) |
22 | 13, 21 | sstri 3930 |
. . . . . . 7
⊢ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ (ℝ* ×
ℝ*) |
23 | 10 | fdmi 6612 |
. . . . . . 7
⊢ dom [,] =
(ℝ* × ℝ*) |
24 | 22, 23 | sseqtrri 3958 |
. . . . . 6
⊢ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,] |
25 | | funimass4 6834 |
. . . . . 6
⊢ ((Fun [,]
∧ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (([,] “
{𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)) |
26 | 12, 24, 25 | mp2an 689 |
. . . . 5
⊢ (([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴) |
27 | 9, 26 | sylibr 233 |
. . . 4
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ([,] “ {𝑧
∈ ran 𝐹 ∣
([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴) |
28 | | sspwuni 5029 |
. . . 4
⊢ (([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴) |
29 | 27, 28 | sylib 217 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ∪ ([,] “ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴) |
30 | | eqid 2738 |
. . . . . 6
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
31 | 30 | rexmet 23954 |
. . . . 5
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
32 | | eqid 2738 |
. . . . . . 7
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
33 | 30, 32 | tgioo 23959 |
. . . . . 6
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
34 | 33 | mopni2 23649 |
. . . . 5
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤 ∈ 𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴) |
35 | 31, 34 | mp3an1 1447 |
. . . 4
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) → ∃𝑟 ∈ ℝ+
(𝑤(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴) |
36 | | elssuni 4871 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ⊆ ∪ (topGen‘ran (,))) |
37 | | uniretop 23926 |
. . . . . . . . . 10
⊢ ℝ =
∪ (topGen‘ran (,)) |
38 | 36, 37 | sseqtrrdi 3972 |
. . . . . . . . 9
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ⊆
ℝ) |
39 | 38 | sselda 3921 |
. . . . . . . 8
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
40 | | rpre 12738 |
. . . . . . . 8
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
41 | 30 | bl2ioo 23955 |
. . . . . . . 8
⊢ ((𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑤(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤 − 𝑟)(,)(𝑤 + 𝑟))) |
42 | 39, 40, 41 | syl2an 596 |
. . . . . . 7
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ 𝑟 ∈ ℝ+) → (𝑤(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤 − 𝑟)(,)(𝑤 + 𝑟))) |
43 | 42 | sseq1d 3952 |
. . . . . 6
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 ↔ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) |
44 | | 2re 12047 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
45 | | 1lt2 12144 |
. . . . . . . . . 10
⊢ 1 <
2 |
46 | | expnlbnd 13948 |
. . . . . . . . . 10
⊢ ((𝑟 ∈ ℝ+
∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟) |
47 | 44, 45, 46 | mp3an23 1452 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ ∃𝑛 ∈
ℕ (1 / (2↑𝑛))
< 𝑟) |
48 | 47 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟) |
49 | 39 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ℝ) |
50 | | 2nn 12046 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ |
51 | | nnnn0 12240 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
52 | 51 | ad2antrl 725 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑛 ∈ ℕ0) |
53 | | nnexpcl 13795 |
. . . . . . . . . . . . . . . . 17
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
54 | 50, 52, 53 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℕ) |
55 | 54 | nnred 11988 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℝ) |
56 | 49, 55 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) ∈ ℝ) |
57 | | fllelt 13517 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 · (2↑𝑛)) ∈ ℝ →
((⌊‘(𝑤 ·
(2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1))) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1))) |
59 | 58 | simpld 495 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))) |
60 | | reflcl 13516 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 · (2↑𝑛)) ∈ ℝ →
(⌊‘(𝑤 ·
(2↑𝑛))) ∈
ℝ) |
61 | 56, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ) |
62 | 54 | nngt0d 12022 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 0 < (2↑𝑛)) |
63 | | ledivmul2 11854 |
. . . . . . . . . . . . 13
⊢
(((⌊‘(𝑤
· (2↑𝑛)))
∈ ℝ ∧ 𝑤
∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) →
(((⌊‘(𝑤
· (2↑𝑛))) /
(2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)))) |
64 | 61, 49, 55, 62, 63 | syl112anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)))) |
65 | 59, 64 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤) |
66 | | peano2re 11148 |
. . . . . . . . . . . . . 14
⊢
((⌊‘(𝑤
· (2↑𝑛)))
∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ) |
67 | 61, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ) |
68 | 67, 54 | nndivred 12027 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈
ℝ) |
69 | 58 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)) |
70 | | ltmuldiv 11848 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℝ ∧
((⌊‘(𝑤 ·
(2↑𝑛))) + 1) ∈
ℝ ∧ ((2↑𝑛)
∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))) |
71 | 49, 67, 55, 62, 70 | syl112anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))) |
72 | 69, 71 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) |
73 | 49, 68, 72 | ltled 11123 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) |
74 | 61, 54 | nndivred 12027 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ) |
75 | | elicc2 13144 |
. . . . . . . . . . . 12
⊢
((((⌊‘(𝑤
· (2↑𝑛))) /
(2↑𝑛)) ∈ ℝ
∧ (((⌊‘(𝑤
· (2↑𝑛))) + 1)
/ (2↑𝑛)) ∈
ℝ) → (𝑤 ∈
(((⌊‘(𝑤
· (2↑𝑛))) /
(2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ∧ 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))) |
76 | 74, 68, 75 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ∧ 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))) |
77 | 49, 65, 73, 76 | mpbir3and 1341 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))) |
78 | 56 | flcld 13518 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ) |
79 | 14 | dyadval 24756 |
. . . . . . . . . . . . 13
⊢
(((⌊‘(𝑤
· (2↑𝑛)))
∈ ℤ ∧ 𝑛
∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛) = 〈((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))〉) |
80 | 78, 52, 79 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛) = 〈((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))〉) |
81 | 80 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) = ([,]‘〈((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))〉)) |
82 | | df-ov 7278 |
. . . . . . . . . . 11
⊢
(((⌊‘(𝑤
· (2↑𝑛))) /
(2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) = ([,]‘〈((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))〉) |
83 | 81, 82 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))) |
84 | 77, 83 | eleqtrrd 2842 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛))) |
85 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛) → ([,]‘𝑧) = ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛))) |
86 | 85 | sseq1d 3952 |
. . . . . . . . . . 11
⊢ (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛) → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ⊆ 𝐴)) |
87 | | ffn 6600 |
. . . . . . . . . . . . 13
⊢ (𝐹:(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) →
𝐹 Fn (ℤ ×
ℕ0)) |
88 | 15, 87 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝐹 Fn (ℤ ×
ℕ0) |
89 | | fnovrn 7447 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn (ℤ ×
ℕ0) ∧ (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) →
((⌊‘(𝑤 ·
(2↑𝑛)))𝐹𝑛) ∈ ran 𝐹) |
90 | 88, 78, 52, 89 | mp3an2i 1465 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛) ∈ ran 𝐹) |
91 | | simplrl 774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ+) |
92 | 91 | rpred 12772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ) |
93 | 49, 92 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 − 𝑟) ∈ ℝ) |
94 | 93 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 − 𝑟) ∈
ℝ*) |
95 | 49, 92 | readdcld 11004 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ) |
96 | 95 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈
ℝ*) |
97 | 74, 92 | readdcld 11004 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟) ∈ ℝ) |
98 | 61 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℂ) |
99 | | 1cnd 10970 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 1 ∈ ℂ) |
100 | 55 | recnd 11003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℂ) |
101 | 54 | nnne0d 12023 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ≠ 0) |
102 | 98, 99, 100, 101 | divdird 11789 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛)))) |
103 | 54 | nnrecred 12024 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) ∈ ℝ) |
104 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) < 𝑟) |
105 | 103, 92, 74, 104 | ltadd2dd 11134 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)) |
106 | 102, 105 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)) |
107 | 49, 68, 97, 72, 106 | lttrd 11136 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)) |
108 | 49, 92, 74 | ltsubaddd 11571 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 − 𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))) |
109 | 107, 108 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 − 𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))) |
110 | 49, 103 | readdcld 11004 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) ∈ ℝ) |
111 | 74, 49, 103, 65 | leadd1dd 11589 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) ≤ (𝑤 + (1 / (2↑𝑛)))) |
112 | 102, 111 | eqbrtrd 5096 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ≤ (𝑤 + (1 / (2↑𝑛)))) |
113 | 103, 92, 49, 104 | ltadd2dd 11134 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) < (𝑤 + 𝑟)) |
114 | 68, 110, 95, 112, 113 | lelttrd 11133 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟)) |
115 | | iccssioo 13148 |
. . . . . . . . . . . . . 14
⊢ ((((𝑤 − 𝑟) ∈ ℝ* ∧ (𝑤 + 𝑟) ∈ ℝ*) ∧ ((𝑤 − 𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟))) |
116 | 94, 96, 109, 114, 115 | syl22anc 836 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟))) |
117 | 83, 116 | eqsstrd 3959 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ⊆ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟))) |
118 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴) |
119 | 117, 118 | sstrd 3931 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ⊆ 𝐴) |
120 | 86, 90, 119 | elrabd 3626 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛) ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) |
121 | | funfvima2 7107 |
. . . . . . . . . . 11
⊢ ((Fun [,]
∧ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) →
(((⌊‘(𝑤
· (2↑𝑛)))𝐹𝑛) ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ∈ ([,] “ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}))) |
122 | 12, 24, 121 | mp2an 689 |
. . . . . . . . . 10
⊢
(((⌊‘(𝑤
· (2↑𝑛)))𝐹𝑛) ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ∈ ([,] “ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴})) |
123 | 120, 122 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ∈ ([,] “ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴})) |
124 | | elunii 4844 |
. . . . . . . . 9
⊢ ((𝑤 ∈
([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))𝐹𝑛)) ∈ ([,] “ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴})) → 𝑤 ∈ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴})) |
125 | 84, 123, 124 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴})) |
126 | 48, 125 | rexlimddv 3220 |
. . . . . . 7
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → 𝑤 ∈ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴})) |
127 | 126 | expr 457 |
. . . . . 6
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ 𝑟 ∈ ℝ+) → (((𝑤 − 𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴 → 𝑤 ∈ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}))) |
128 | 43, 127 | sylbid 239 |
. . . . 5
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 → 𝑤 ∈ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}))) |
129 | 128 | rexlimdva 3213 |
. . . 4
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) → (∃𝑟 ∈ ℝ+
(𝑤(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 → 𝑤 ∈ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}))) |
130 | 35, 129 | mpd 15 |
. . 3
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ∪ ([,]
“ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴})) |
131 | 29, 130 | eqelssd 3942 |
. 2
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ∪ ([,] “ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴) |
132 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑐 = 𝑎 → ([,]‘𝑐) = ([,]‘𝑎)) |
133 | 132 | sseq1d 3952 |
. . . . . 6
⊢ (𝑐 = 𝑎 → (([,]‘𝑐) ⊆ ([,]‘𝑏) ↔ ([,]‘𝑎) ⊆ ([,]‘𝑏))) |
134 | | equequ1 2028 |
. . . . . 6
⊢ (𝑐 = 𝑎 → (𝑐 = 𝑏 ↔ 𝑎 = 𝑏)) |
135 | 133, 134 | imbi12d 345 |
. . . . 5
⊢ (𝑐 = 𝑎 → ((([,]‘𝑐) ⊆ ([,]‘𝑏) → 𝑐 = 𝑏) ↔ (([,]‘𝑎) ⊆ ([,]‘𝑏) → 𝑎 = 𝑏))) |
136 | 135 | ralbidv 3112 |
. . . 4
⊢ (𝑐 = 𝑎 → (∀𝑏 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} (([,]‘𝑐) ⊆ ([,]‘𝑏) → 𝑐 = 𝑏) ↔ ∀𝑏 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑏) → 𝑎 = 𝑏))) |
137 | 136 | cbvrabv 3426 |
. . 3
⊢ {𝑐 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ∣ ∀𝑏 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} (([,]‘𝑐) ⊆ ([,]‘𝑏) → 𝑐 = 𝑏)} = {𝑎 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ∣ ∀𝑏 ∈ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑏) → 𝑎 = 𝑏)} |
138 | 13 | a1i 11 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ ran 𝐹) |
139 | 14, 137, 138 | dyadmbl 24764 |
. 2
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ∪ ([,] “ {𝑧 ∈ ran 𝐹 ∣ ([,]‘𝑧) ⊆ 𝐴}) ∈ dom vol) |
140 | 131, 139 | eqeltrrd 2840 |
1
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ∈ dom
vol) |