MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficc Structured version   Visualization version   GIF version

Theorem ovolficc 24967
Description: Unpack the interval covering property using closed intervals. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolficc ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolficc
StepHypRef Expression
1 iccf 13421 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2 inss2 4228 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 11255 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3990 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 6731 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 690 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 6738 . . . . . 6 (([,]:(ℝ* × ℝ*)⟶𝒫 ℝ*𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
81, 6, 7sylancr 588 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
9 ffn 6714 . . . . 5 (([,] ∘ 𝐹):ℕ⟶𝒫 ℝ* → ([,] ∘ 𝐹) Fn ℕ)
10 fniunfv 7241 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
1211sseq2d 4013 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
1312adantl 483 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
14 dfss3 3969 . . 3 (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛))
15 ssel2 3976 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 5000 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛))
17 simpll 766 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ)
18 fvco3 6986 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ([,]‘(𝐹𝑛)))
19 ffvelcdm 7079 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
2019elin2d 4198 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
21 1st2nd2 8009 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2322fveq2d 6892 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
24 df-ov 7407 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2523, 24eqtr4di 2791 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2618, 25eqtrd 2773 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2726eleq2d 2820 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛)))))
28 ovolfcl 24965 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
29 elicc2 13385 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
30 3anass 1096 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3129, 30bitrdi 287 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
32313adant3 1133 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3328, 32syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3427, 33bitrd 279 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3534adantll 713 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3617, 35mpbirand 706 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3736rexbidva 3177 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3816, 37bitrid 283 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3915, 38sylan 581 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4039an32s 651 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4140ralbidva 3176 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4214, 41bitrid 283 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4313, 42bitr3d 281 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cin 3946  wss 3947  𝒫 cpw 4601  cop 4633   cuni 4907   ciun 4996   class class class wbr 5147   × cxp 5673  ran crn 5676  ccom 5679   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7404  1st c1st 7968  2nd c2nd 7969  cr 11105  *cxr 11243  cle 11245  cn 12208  [,]cicc 13323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-icc 13327
This theorem is referenced by:  ovollb2lem  24987  ovolctb  24989  ovolicc1  25015  ioombl1lem4  25060
  Copyright terms: Public domain W3C validator