MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficc Structured version   Visualization version   GIF version

Theorem ovolficc 25369
Description: Unpack the interval covering property using closed intervals. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolficc ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolficc
StepHypRef Expression
1 iccf 13409 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2 inss2 4201 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 11219 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3956 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 6704 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 691 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 6712 . . . . . 6 (([,]:(ℝ* × ℝ*)⟶𝒫 ℝ*𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
81, 6, 7sylancr 587 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
9 ffn 6688 . . . . 5 (([,] ∘ 𝐹):ℕ⟶𝒫 ℝ* → ([,] ∘ 𝐹) Fn ℕ)
10 fniunfv 7221 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
1211sseq2d 3979 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
1312adantl 481 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
14 dfss3 3935 . . 3 (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛))
15 ssel2 3941 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 4959 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛))
17 simpll 766 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ)
18 fvco3 6960 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ([,]‘(𝐹𝑛)))
19 ffvelcdm 7053 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
2019elin2d 4168 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
21 1st2nd2 8007 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2322fveq2d 6862 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
24 df-ov 7390 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2523, 24eqtr4di 2782 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2618, 25eqtrd 2764 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2726eleq2d 2814 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛)))))
28 ovolfcl 25367 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
29 elicc2 13372 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
30 3anass 1094 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3129, 30bitrdi 287 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
32313adant3 1132 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3328, 32syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3427, 33bitrd 279 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3534adantll 714 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3617, 35mpbirand 707 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3736rexbidva 3155 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3816, 37bitrid 283 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3915, 38sylan 580 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4039an32s 652 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4140ralbidva 3154 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4214, 41bitrid 283 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4313, 42bitr3d 281 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107   × cxp 5636  ran crn 5639  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  cr 11067  *cxr 11207  cle 11209  cn 12186  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-icc 13313
This theorem is referenced by:  ovollb2lem  25389  ovolctb  25391  ovolicc1  25417  ioombl1lem4  25462
  Copyright terms: Public domain W3C validator