MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficc Structured version   Visualization version   GIF version

Theorem ovolficc 25376
Description: Unpack the interval covering property using closed intervals. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolficc ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolficc
StepHypRef Expression
1 iccf 13416 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2 inss2 4204 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 11226 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3959 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 6707 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 691 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 6715 . . . . . 6 (([,]:(ℝ* × ℝ*)⟶𝒫 ℝ*𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
81, 6, 7sylancr 587 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] ∘ 𝐹):ℕ⟶𝒫 ℝ*)
9 ffn 6691 . . . . 5 (([,] ∘ 𝐹):ℕ⟶𝒫 ℝ* → ([,] ∘ 𝐹) Fn ℕ)
10 fniunfv 7224 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ran ([,] ∘ 𝐹))
1211sseq2d 3982 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
1312adantl 481 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ([,] ∘ 𝐹)))
14 dfss3 3938 . . 3 (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛))
15 ssel2 3944 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 4962 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛))
17 simpll 766 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ)
18 fvco3 6963 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ([,]‘(𝐹𝑛)))
19 ffvelcdm 7056 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
2019elin2d 4171 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
21 1st2nd2 8010 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2322fveq2d 6865 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
24 df-ov 7393 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) = ([,]‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2523, 24eqtr4di 2783 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2618, 25eqtrd 2765 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))))
2726eleq2d 2815 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛)))))
28 ovolfcl 25374 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
29 elicc2 13379 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
30 3anass 1094 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3129, 30bitrdi 287 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
32313adant3 1132 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3328, 32syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))[,](2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3427, 33bitrd 279 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3534adantll 714 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛))))))
3617, 35mpbirand 707 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3736rexbidva 3156 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3816, 37bitrid 283 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
3915, 38sylan 580 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4039an32s 652 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4140ralbidva 3155 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4214, 41bitrid 283 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
4313, 42bitr3d 281 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ([,] ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) ≤ 𝑧𝑧 ≤ (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566  cop 4598   cuni 4874   ciun 4958   class class class wbr 5110   × cxp 5639  ran crn 5642  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  cr 11074  *cxr 11214  cle 11216  cn 12193  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-icc 13320
This theorem is referenced by:  ovollb2lem  25396  ovolctb  25398  ovolicc1  25424  ioombl1lem4  25469
  Copyright terms: Public domain W3C validator