Proof of Theorem ovolficc
Step | Hyp | Ref
| Expression |
1 | | iccf 13036 |
. . . . . 6
⊢
[,]:(ℝ* × ℝ*)⟶𝒫
ℝ* |
2 | | inss2 4144 |
. . . . . . . 8
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
3 | | rexpssxrxp 10878 |
. . . . . . . 8
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
4 | 2, 3 | sstri 3910 |
. . . . . . 7
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ* ×
ℝ*) |
5 | | fss 6562 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
6 | 4, 5 | mpan2 691 |
. . . . . 6
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
7 | | fco 6569 |
. . . . . 6
⊢
(([,]:(ℝ* × ℝ*)⟶𝒫
ℝ* ∧ 𝐹:ℕ⟶(ℝ* ×
ℝ*)) → ([,] ∘ 𝐹):ℕ⟶𝒫
ℝ*) |
8 | 1, 6, 7 | sylancr 590 |
. . . . 5
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ([,] ∘ 𝐹):ℕ⟶𝒫
ℝ*) |
9 | | ffn 6545 |
. . . . 5
⊢ (([,]
∘ 𝐹):ℕ⟶𝒫
ℝ* → ([,] ∘ 𝐹) Fn ℕ) |
10 | | fniunfv 7060 |
. . . . 5
⊢ (([,]
∘ 𝐹) Fn ℕ
→ ∪ 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) = ∪ ran ([,]
∘ 𝐹)) |
11 | 8, 9, 10 | 3syl 18 |
. . . 4
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∪ 𝑛 ∈ ℕ (([,] ∘
𝐹)‘𝑛) = ∪ ran ([,]
∘ 𝐹)) |
12 | 11 | sseq2d 3933 |
. . 3
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (𝐴 ⊆ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛) ↔ 𝐴 ⊆ ∪ ran
([,] ∘ 𝐹))) |
13 | 12 | adantl 485 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛) ↔ 𝐴 ⊆ ∪ ran
([,] ∘ 𝐹))) |
14 | | dfss3 3888 |
. . 3
⊢ (𝐴 ⊆ ∪ 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∀𝑧 ∈ 𝐴 𝑧 ∈ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛)) |
15 | | ssel2 3895 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℝ) |
16 | | eliun 4908 |
. . . . . . 7
⊢ (𝑧 ∈ ∪ 𝑛 ∈ ℕ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛)) |
17 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ) |
18 | | fvco3 6810 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ([,]‘(𝐹‘𝑛))) |
19 | | ffvelrn 6902 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
20 | 19 | elin2d 4113 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (ℝ ×
ℝ)) |
21 | | 1st2nd2 7800 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑛) ∈ (ℝ × ℝ) →
(𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
23 | 22 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹‘𝑛)) = ([,]‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉)) |
24 | | df-ov 7216 |
. . . . . . . . . . . . . 14
⊢
((1st ‘(𝐹‘𝑛))[,](2nd ‘(𝐹‘𝑛))) = ([,]‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉) |
25 | 23, 24 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ([,]‘(𝐹‘𝑛)) = ((1st ‘(𝐹‘𝑛))[,](2nd ‘(𝐹‘𝑛)))) |
26 | 18, 25 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹‘𝑛))[,](2nd ‘(𝐹‘𝑛)))) |
27 | 26 | eleq2d 2823 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹‘𝑛))[,](2nd ‘(𝐹‘𝑛))))) |
28 | | ovolfcl 24363 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝐹‘𝑛)) ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐹‘𝑛)))) |
29 | | elicc2 13000 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st
‘(𝐹‘𝑛))[,](2nd
‘(𝐹‘𝑛))) ↔ (𝑧 ∈ ℝ ∧ (1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
30 | | 3anass 1097 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ ∧
(1st ‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
31 | 29, 30 | bitrdi 290 |
. . . . . . . . . . . . 13
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st
‘(𝐹‘𝑛))[,](2nd
‘(𝐹‘𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛)))))) |
32 | 31 | 3adant3 1134 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝐹‘𝑛)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑛)) ∈ ℝ ∧
(1st ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐹‘𝑛))) → (𝑧 ∈ ((1st ‘(𝐹‘𝑛))[,](2nd ‘(𝐹‘𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛)))))) |
33 | 28, 32 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹‘𝑛))[,](2nd ‘(𝐹‘𝑛))) ↔ (𝑧 ∈ ℝ ∧ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛)))))) |
34 | 27, 33 | bitrd 282 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛)))))) |
35 | 34 | adantll 714 |
. . . . . . . . 9
⊢ (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ ∧ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛)))))) |
36 | 17, 35 | mpbirand 707 |
. . . . . . . 8
⊢ (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
37 | 36 | rexbidva 3215 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (([,] ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
38 | 16, 37 | syl5bb 286 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝑧 ∈ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
39 | 15, 38 | sylan 583 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝑧 ∈ 𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) → (𝑧 ∈ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
40 | 39 | an32s 652 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
41 | 40 | ralbidva 3117 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (∀𝑧 ∈ 𝐴 𝑧 ∈ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛) ↔ ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
42 | 14, 41 | syl5bb 286 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪
𝑛 ∈ ℕ (([,]
∘ 𝐹)‘𝑛) ↔ ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |
43 | 13, 42 | bitr3d 284 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) → (𝐴 ⊆ ∪ ran
([,] ∘ 𝐹) ↔
∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ ((1st
‘(𝐹‘𝑛)) ≤ 𝑧 ∧ 𝑧 ≤ (2nd ‘(𝐹‘𝑛))))) |