Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . 4
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
π΄ β βͺ ran ((,) β πΉ)) |
2 | | ioof 13420 |
. . . . . . 7
β’
(,):(β* Γ β*)βΆπ«
β |
3 | | simpl 483 |
. . . . . . . 8
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
πΉ:ββΆ( β€
β© (β Γ β))) |
4 | | inss2 4228 |
. . . . . . . . 9
β’ ( β€
β© (β Γ β)) β (β Γ
β) |
5 | | rexpssxrxp 11255 |
. . . . . . . . 9
β’ (β
Γ β) β (β* Γ
β*) |
6 | 4, 5 | sstri 3990 |
. . . . . . . 8
β’ ( β€
β© (β Γ β)) β (β* Γ
β*) |
7 | | fss 6731 |
. . . . . . . 8
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ ( β€ β© (β Γ β))
β (β* Γ β*)) β πΉ:ββΆ(β* Γ
β*)) |
8 | 3, 6, 7 | sylancl 586 |
. . . . . . 7
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
πΉ:ββΆ(β* Γ
β*)) |
9 | | fco 6738 |
. . . . . . 7
β’
(((,):(β* Γ β*)βΆπ«
β β§ πΉ:ββΆ(β* Γ
β*)) β ((,) β πΉ):ββΆπ«
β) |
10 | 2, 8, 9 | sylancr 587 |
. . . . . 6
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
((,) β πΉ):ββΆπ«
β) |
11 | 10 | frnd 6722 |
. . . . 5
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β ran
((,) β πΉ) β
π« β) |
12 | | sspwuni 5102 |
. . . . 5
β’ (ran ((,)
β πΉ) β
π« β β βͺ ran ((,) β πΉ) β
β) |
13 | 11, 12 | sylib 217 |
. . . 4
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
βͺ ran ((,) β πΉ) β β) |
14 | 1, 13 | sstrd 3991 |
. . 3
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
π΄ β
β) |
15 | | eqid 2732 |
. . . 4
β’ {π¦ β β*
β£ βπ β ((
β€ β© (β Γ β)) βm β)(π΄ β βͺ ran ((,) β π) β§ π¦ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ))} = {π¦ β β* β£
βπ β (( β€
β© (β Γ β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, <
))} |
16 | 15 | ovolval 24981 |
. . 3
β’ (π΄ β β β
(vol*βπ΄) = inf({π¦ β β*
β£ βπ β ((
β€ β© (β Γ β)) βm β)(π΄ β βͺ ran ((,) β π) β§ π¦ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ))}, β*, < )) |
17 | 14, 16 | syl 17 |
. 2
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
(vol*βπ΄) = inf({π¦ β β*
β£ βπ β ((
β€ β© (β Γ β)) βm β)(π΄ β βͺ ran ((,) β π) β§ π¦ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ))}, β*, < )) |
18 | | ssrab2 4076 |
. . 3
β’ {π¦ β β*
β£ βπ β ((
β€ β© (β Γ β)) βm β)(π΄ β βͺ ran ((,) β π) β§ π¦ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ))} β β* |
19 | | ovollb.1 |
. . . 4
β’ π = seq1( + , ((abs β
β ) β πΉ)) |
20 | 15, 19 | elovolmr 24984 |
. . 3
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
sup(ran π,
β*, < ) β {π¦ β β* β£
βπ β (( β€
β© (β Γ β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, <
))}) |
21 | | infxrlb 13309 |
. . 3
β’ (({π¦ β β*
β£ βπ β ((
β€ β© (β Γ β)) βm β)(π΄ β βͺ ran ((,) β π) β§ π¦ = sup(ran seq1( + , ((abs β β )
β π)),
β*, < ))} β β* β§ sup(ran π, β*, < )
β {π¦ β
β* β£ βπ β (( β€ β© (β Γ
β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, < ))}) β
inf({π¦ β
β* β£ βπ β (( β€ β© (β Γ
β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, < ))},
β*, < ) β€ sup(ran π, β*, <
)) |
22 | 18, 20, 21 | sylancr 587 |
. 2
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
inf({π¦ β
β* β£ βπ β (( β€ β© (β Γ
β)) βm β)(π΄ β βͺ ran
((,) β π) β§ π¦ = sup(ran seq1( + , ((abs
β β ) β π)), β*, < ))},
β*, < ) β€ sup(ran π, β*, <
)) |
23 | 17, 22 | eqbrtrd 5169 |
1
β’ ((πΉ:ββΆ( β€ β©
(β Γ β)) β§ π΄ β βͺ ran
((,) β πΉ)) β
(vol*βπ΄) β€ sup(ran
π, β*,
< )) |