![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovollb | Structured version Visualization version GIF version |
Description: The outer volume is a lower bound on the sum of all interval coverings of 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
ovollb.1 | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
Ref | Expression |
---|---|
ovollb | ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) | |
2 | ioof 13464 | . . . . . . 7 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
3 | simpl 481 | . . . . . . . 8 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
4 | inss2 4228 | . . . . . . . . 9 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ) | |
5 | rexpssxrxp 11296 | . . . . . . . . 9 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
6 | 4, 5 | sstri 3986 | . . . . . . . 8 ⊢ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*) |
7 | fss 6739 | . . . . . . . 8 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*)) | |
8 | 3, 6, 7 | sylancl 584 | . . . . . . 7 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → 𝐹:ℕ⟶(ℝ* × ℝ*)) |
9 | fco 6747 | . . . . . . 7 ⊢ (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ) | |
10 | 2, 8, 9 | sylancr 585 | . . . . . 6 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ) |
11 | 10 | frnd 6731 | . . . . 5 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ) |
12 | sspwuni 5104 | . . . . 5 ⊢ (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ∪ ran ((,) ∘ 𝐹) ⊆ ℝ) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → ∪ ran ((,) ∘ 𝐹) ⊆ ℝ) |
14 | 1, 13 | sstrd 3987 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → 𝐴 ⊆ ℝ) |
15 | eqid 2725 | . . . 4 ⊢ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} | |
16 | 15 | ovolval 25451 | . . 3 ⊢ (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < )) |
17 | 14, 16 | syl 17 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < )) |
18 | ssrab2 4073 | . . 3 ⊢ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ* | |
19 | ovollb.1 | . . . 4 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
20 | 15, 19 | elovolmr 25454 | . . 3 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → sup(ran 𝑆, ℝ*, < ) ∈ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}) |
21 | infxrlb 13353 | . . 3 ⊢ (({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} ⊆ ℝ* ∧ sup(ran 𝑆, ℝ*, < ) ∈ {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}) → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ≤ sup(ran 𝑆, ℝ*, < )) | |
22 | 18, 20, 21 | sylancr 585 | . 2 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) ≤ sup(ran 𝑆, ℝ*, < )) |
23 | 17, 22 | eqbrtrd 5171 | 1 ⊢ ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ⊆ ∪ ran ((,) ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 {crab 3418 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4604 ∪ cuni 4909 class class class wbr 5149 × cxp 5676 ran crn 5679 ∘ ccom 5682 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ↑m cmap 8845 supcsup 9470 infcinf 9471 ℝcr 11144 1c1 11146 + caddc 11148 ℝ*cxr 11284 < clt 11285 ≤ cle 11286 − cmin 11481 ℕcn 12250 (,)cioo 13364 seqcseq 14007 abscabs 15222 vol*covol 25440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9472 df-inf 9473 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-ioo 13368 df-ico 13370 df-fz 13525 df-seq 14008 df-exp 14068 df-cj 15087 df-re 15088 df-im 15089 df-sqrt 15223 df-abs 15224 df-ovol 25442 |
This theorem is referenced by: ovollb2lem 25466 ovolunlem1 25475 ovoliunlem1 25480 ovoliunlem2 25481 ovolscalem1 25491 uniioovol 25557 uniioombllem3 25563 uniioombllem4 25564 uniioombllem5 25565 mblfinlem3 37265 mblfinlem4 37266 ismblfin 37267 |
Copyright terms: Public domain | W3C validator |