MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombl Structured version   Visualization version   GIF version

Theorem uniioombl 24193
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 24157.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioombl (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioombl
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12838 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 inss2 4209 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 rexpssxrxp 10689 . . . . . . 7 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
53, 4sstri 3979 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
6 fss 6530 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
72, 5, 6sylancl 588 . . . . 5 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
8 fco 6534 . . . . 5 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
91, 7, 8sylancr 589 . . . 4 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
109frnd 6524 . . 3 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
11 sspwuni 5025 . . 3 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
1210, 11sylib 220 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
13 elpwi 4551 . . . . . . . . . 10 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → 𝑧 ⊆ ℝ)
15 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
16 rphalfcl 12419 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
1716rphalfcld 12446 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
18 eqid 2824 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1918ovolgelb 24084 . . . . . . . . 9 ((𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
2014, 15, 17, 19syl2an3an 1418 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
212ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
2322ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
24 uniioombl.3 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
25 eqid 2824 . . . . . . . . 9 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐹)
2615adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (vol*‘𝑧) ∈ ℝ)
2726adantr 483 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (vol*‘𝑧) ∈ ℝ)
2816adantl 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2928adantr 483 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (𝑟 / 2) ∈ ℝ+)
3029rphalfcld 12446 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((𝑟 / 2) / 2) ∈ ℝ+)
31 elmapi 8431 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3231ad2antrl 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
33 simprrl 779 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑧 ran ((,) ∘ 𝑓))
34 simprrr 780 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2)))
3521, 23, 24, 25, 27, 30, 32, 33, 18, 34uniioombllem6 24192 . . . . . . . 8 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
3620, 35rexlimddv 3294 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
37 rpcn 12402 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
3837adantl 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
39 2cnd 11718 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ∈ ℂ)
40 2ne0 11744 . . . . . . . . . . . . 13 2 ≠ 0
4140a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ≠ 0)
4238, 39, 39, 41, 41divdiv1d 11450 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / (2 · 2)))
43 2t2e4 11804 . . . . . . . . . . . 12 (2 · 2) = 4
4443oveq2i 7170 . . . . . . . . . . 11 (𝑟 / (2 · 2)) = (𝑟 / 4)
4542, 44syl6eq 2875 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / 4))
4645oveq2d 7175 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = (4 · (𝑟 / 4)))
47 4cn 11725 . . . . . . . . . . 11 4 ∈ ℂ
4847a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ∈ ℂ)
49 4ne0 11748 . . . . . . . . . . 11 4 ≠ 0
5049a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ≠ 0)
5138, 48, 50divcan2d 11421 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · (𝑟 / 4)) = 𝑟)
5246, 51eqtrd 2859 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = 𝑟)
5352oveq2d 7175 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))) = ((vol*‘𝑧) + 𝑟))
5436, 53breqtrd 5095 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
5554ralrimiva 3185 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
56 inss1 4208 . . . . . . . . 9 (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧
5756a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
58 ovolsscl 24090 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
5957, 14, 15, 58syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
60 difssd 4112 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
61 ovolsscl 24090 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6260, 14, 15, 61syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6359, 62readdcld 10673 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ)
64 alrple 12602 . . . . . 6 ((((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6563, 15, 64syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6655, 65mpbird 259 . . . 4 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))
6766expr 459 . . 3 ((𝜑𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
6867ralrimiva 3185 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
69 ismbl2 24131 . 2 ( ran ((,) ∘ 𝐹) ∈ dom vol ↔ ( ran ((,) ∘ 𝐹) ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))))
7012, 68, 69sylanbrc 585 1 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  cdif 3936  cin 3938  wss 3939  𝒫 cpw 4542   cuni 4841  Disj wdisj 5034   class class class wbr 5069   × cxp 5556  dom cdm 5558  ran crn 5559  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  m cmap 8409  supcsup 8907  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  *cxr 10677   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  4c4 11697  +crp 12392  (,)cioo 12741  seqcseq 13372  abscabs 14596  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-acn 9374  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cmp 21998  df-ovol 24068  df-vol 24069
This theorem is referenced by:  uniiccmbl  24194
  Copyright terms: Public domain W3C validator