MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombl Structured version   Visualization version   GIF version

Theorem uniioombl 25624
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25588.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioombl (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioombl
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 13487 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 inss2 4238 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 rexpssxrxp 11306 . . . . . . 7 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
53, 4sstri 3993 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
6 fss 6752 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
72, 5, 6sylancl 586 . . . . 5 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
8 fco 6760 . . . . 5 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
91, 7, 8sylancr 587 . . . 4 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
109frnd 6744 . . 3 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
11 sspwuni 5100 . . 3 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
1210, 11sylib 218 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
13 elpwi 4607 . . . . . . . . . 10 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → 𝑧 ⊆ ℝ)
15 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
16 rphalfcl 13062 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
1716rphalfcld 13089 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
18 eqid 2737 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1918ovolgelb 25515 . . . . . . . . 9 ((𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
2014, 15, 17, 19syl2an3an 1424 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
212ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
2322ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
24 uniioombl.3 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
25 eqid 2737 . . . . . . . . 9 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐹)
2615adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (vol*‘𝑧) ∈ ℝ)
2726adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (vol*‘𝑧) ∈ ℝ)
2816adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2928adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (𝑟 / 2) ∈ ℝ+)
3029rphalfcld 13089 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((𝑟 / 2) / 2) ∈ ℝ+)
31 elmapi 8889 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3231ad2antrl 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
33 simprrl 781 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑧 ran ((,) ∘ 𝑓))
34 simprrr 782 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2)))
3521, 23, 24, 25, 27, 30, 32, 33, 18, 34uniioombllem6 25623 . . . . . . . 8 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
3620, 35rexlimddv 3161 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
37 rpcn 13045 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
3837adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
39 2cnd 12344 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ∈ ℂ)
40 2ne0 12370 . . . . . . . . . . . . 13 2 ≠ 0
4140a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ≠ 0)
4238, 39, 39, 41, 41divdiv1d 12074 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / (2 · 2)))
43 2t2e4 12430 . . . . . . . . . . . 12 (2 · 2) = 4
4443oveq2i 7442 . . . . . . . . . . 11 (𝑟 / (2 · 2)) = (𝑟 / 4)
4542, 44eqtrdi 2793 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / 4))
4645oveq2d 7447 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = (4 · (𝑟 / 4)))
47 4cn 12351 . . . . . . . . . . 11 4 ∈ ℂ
4847a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ∈ ℂ)
49 4ne0 12374 . . . . . . . . . . 11 4 ≠ 0
5049a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ≠ 0)
5138, 48, 50divcan2d 12045 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · (𝑟 / 4)) = 𝑟)
5246, 51eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = 𝑟)
5352oveq2d 7447 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))) = ((vol*‘𝑧) + 𝑟))
5436, 53breqtrd 5169 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
5554ralrimiva 3146 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
56 inss1 4237 . . . . . . . . 9 (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧
5756a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
58 ovolsscl 25521 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
5957, 14, 15, 58syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
60 difssd 4137 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
61 ovolsscl 25521 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6260, 14, 15, 61syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6359, 62readdcld 11290 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ)
64 alrple 13248 . . . . . 6 ((((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6563, 15, 64syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6655, 65mpbird 257 . . . 4 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))
6766expr 456 . . 3 ((𝜑𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
6867ralrimiva 3146 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
69 ismbl2 25562 . 2 ( ran ((,) ∘ 𝐹) ∈ dom vol ↔ ( ran ((,) ∘ 𝐹) ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))))
7012, 68, 69sylanbrc 583 1 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  cin 3950  wss 3951  𝒫 cpw 4600   cuni 4907  Disj wdisj 5110   class class class wbr 5143   × cxp 5683  dom cdm 5685  ran crn 5686  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  supcsup 9480  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  +crp 13034  (,)cioo 13387  seqcseq 14042  abscabs 15273  vol*covol 25497  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-ovol 25499  df-vol 25500
This theorem is referenced by:  uniiccmbl  25625
  Copyright terms: Public domain W3C validator