MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombl Structured version   Visualization version   GIF version

Theorem uniioombl 25540
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 25504.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioombl (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioombl
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 13462 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 inss2 4213 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 rexpssxrxp 11278 . . . . . . 7 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
53, 4sstri 3968 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
6 fss 6721 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
72, 5, 6sylancl 586 . . . . 5 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
8 fco 6729 . . . . 5 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
91, 7, 8sylancr 587 . . . 4 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
109frnd 6713 . . 3 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
11 sspwuni 5076 . . 3 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
1210, 11sylib 218 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
13 elpwi 4582 . . . . . . . . . 10 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → 𝑧 ⊆ ℝ)
15 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
16 rphalfcl 13034 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
1716rphalfcld 13061 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
18 eqid 2735 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1918ovolgelb 25431 . . . . . . . . 9 ((𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
2014, 15, 17, 19syl2an3an 1424 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
212ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
2322ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
24 uniioombl.3 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
25 eqid 2735 . . . . . . . . 9 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐹)
2615adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (vol*‘𝑧) ∈ ℝ)
2726adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (vol*‘𝑧) ∈ ℝ)
2816adantl 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2928adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (𝑟 / 2) ∈ ℝ+)
3029rphalfcld 13061 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((𝑟 / 2) / 2) ∈ ℝ+)
31 elmapi 8861 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3231ad2antrl 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
33 simprrl 780 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑧 ran ((,) ∘ 𝑓))
34 simprrr 781 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2)))
3521, 23, 24, 25, 27, 30, 32, 33, 18, 34uniioombllem6 25539 . . . . . . . 8 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
3620, 35rexlimddv 3147 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
37 rpcn 13017 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
3837adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
39 2cnd 12316 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ∈ ℂ)
40 2ne0 12342 . . . . . . . . . . . . 13 2 ≠ 0
4140a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ≠ 0)
4238, 39, 39, 41, 41divdiv1d 12046 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / (2 · 2)))
43 2t2e4 12402 . . . . . . . . . . . 12 (2 · 2) = 4
4443oveq2i 7414 . . . . . . . . . . 11 (𝑟 / (2 · 2)) = (𝑟 / 4)
4542, 44eqtrdi 2786 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / 4))
4645oveq2d 7419 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = (4 · (𝑟 / 4)))
47 4cn 12323 . . . . . . . . . . 11 4 ∈ ℂ
4847a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ∈ ℂ)
49 4ne0 12346 . . . . . . . . . . 11 4 ≠ 0
5049a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ≠ 0)
5138, 48, 50divcan2d 12017 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · (𝑟 / 4)) = 𝑟)
5246, 51eqtrd 2770 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = 𝑟)
5352oveq2d 7419 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))) = ((vol*‘𝑧) + 𝑟))
5436, 53breqtrd 5145 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
5554ralrimiva 3132 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
56 inss1 4212 . . . . . . . . 9 (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧
5756a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
58 ovolsscl 25437 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
5957, 14, 15, 58syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
60 difssd 4112 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
61 ovolsscl 25437 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6260, 14, 15, 61syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6359, 62readdcld 11262 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ)
64 alrple 13220 . . . . . 6 ((((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6563, 15, 64syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6655, 65mpbird 257 . . . 4 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))
6766expr 456 . . 3 ((𝜑𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
6867ralrimiva 3132 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
69 ismbl2 25478 . 2 ( ran ((,) ∘ 𝐹) ∈ dom vol ↔ ( ran ((,) ∘ 𝐹) ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))))
7012, 68, 69sylanbrc 583 1 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  Disj wdisj 5086   class class class wbr 5119   × cxp 5652  dom cdm 5654  ran crn 5655  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  m cmap 8838  supcsup 9450  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  *cxr 11266   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  4c4 12295  +crp 13006  (,)cioo 13360  seqcseq 14017  abscabs 15251  vol*covol 25413  volcvol 25414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-acn 9954  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-rlim 15503  df-sum 15701  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-bases 22882  df-cmp 23323  df-ovol 25415  df-vol 25416
This theorem is referenced by:  uniiccmbl  25541
  Copyright terms: Public domain W3C validator