Step | Hyp | Ref
| Expression |
1 | | ioof 13179 |
. . . . 5
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
2 | | uniioombl.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ
× ℝ))) |
3 | | inss2 4163 |
. . . . . . 7
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
4 | | rexpssxrxp 11020 |
. . . . . . 7
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
5 | 3, 4 | sstri 3930 |
. . . . . 6
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ* ×
ℝ*) |
6 | | fss 6617 |
. . . . . 6
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ))
⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
7 | 2, 5, 6 | sylancl 586 |
. . . . 5
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ* ×
ℝ*)) |
8 | | fco 6624 |
. . . . 5
⊢
(((,):(ℝ* × ℝ*)⟶𝒫
ℝ ∧ 𝐹:ℕ⟶(ℝ* ×
ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫
ℝ) |
9 | 1, 7, 8 | sylancr 587 |
. . . 4
⊢ (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫
ℝ) |
10 | 9 | frnd 6608 |
. . 3
⊢ (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫
ℝ) |
11 | | sspwuni 5029 |
. . 3
⊢ (ran ((,)
∘ 𝐹) ⊆
𝒫 ℝ ↔ ∪ ran ((,) ∘ 𝐹) ⊆
ℝ) |
12 | 10, 11 | sylib 217 |
. 2
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ⊆ ℝ) |
13 | | elpwi 4542 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝒫 ℝ →
𝑧 ⊆
ℝ) |
14 | 13 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → 𝑧 ⊆
ℝ) |
15 | | simprr 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (vol*‘𝑧) ∈ ℝ) |
16 | | rphalfcl 12757 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) |
17 | 16 | rphalfcld 12784 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ ((𝑟 / 2) / 2) ∈
ℝ+) |
18 | | eqid 2738 |
. . . . . . . . . 10
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
19 | 18 | ovolgelb 24644 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ ℝ ∧
(vol*‘𝑧) ∈
ℝ ∧ ((𝑟 / 2) / 2)
∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2)))) |
20 | 14, 15, 17, 19 | syl2an3an 1421 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2)))) |
21 | 2 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ))) |
22 | | uniioombl.2 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑥 ∈ ℕ
((,)‘(𝐹‘𝑥))) |
23 | 22 | ad3antrrr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) →
Disj 𝑥 ∈
ℕ ((,)‘(𝐹‘𝑥))) |
24 | | uniioombl.3 |
. . . . . . . . 9
⊢ 𝑆 = seq1( + , ((abs ∘
− ) ∘ 𝐹)) |
25 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ ran ((,) ∘ 𝐹) = ∪ ran ((,)
∘ 𝐹) |
26 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → (vol*‘𝑧) ∈ ℝ) |
27 | 26 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) →
(vol*‘𝑧) ∈
ℝ) |
28 | 16 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → (𝑟 / 2) ∈
ℝ+) |
29 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (𝑟 / 2) ∈
ℝ+) |
30 | 29 | rphalfcld 12784 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((𝑟 / 2) / 2) ∈
ℝ+) |
31 | | elmapi 8637 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
32 | 31 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ))) |
33 | | simprrl 778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑧 ⊆ ∪ ran ((,) ∘ 𝑓)) |
34 | | simprrr 779 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))) |
35 | 21, 23, 24, 25, 27, 30, 32, 33, 18, 34 | uniioombllem6 24752 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ) ∧ (𝑧 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑧) + ((𝑟 / 2) / 2))))) →
((vol*‘(𝑧 ∩ ∪ ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ∖ ∪ ran
((,) ∘ 𝐹)))) ≤
((vol*‘𝑧) + (4
· ((𝑟 / 2) /
2)))) |
36 | 20, 35 | rexlimddv 3220 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2)))) |
37 | | rpcn 12740 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℂ) |
38 | 37 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → 𝑟 ∈ ℂ) |
39 | | 2cnd 12051 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → 2 ∈ ℂ) |
40 | | 2ne0 12077 |
. . . . . . . . . . . . 13
⊢ 2 ≠
0 |
41 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → 2 ≠ 0) |
42 | 38, 39, 39, 41, 41 | divdiv1d 11782 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / (2 · 2))) |
43 | | 2t2e4 12137 |
. . . . . . . . . . . 12
⊢ (2
· 2) = 4 |
44 | 43 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝑟 / (2 · 2)) = (𝑟 / 4) |
45 | 42, 44 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / 4)) |
46 | 45 | oveq2d 7291 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → (4 · ((𝑟 / 2) / 2)) = (4 · (𝑟 / 4))) |
47 | | 4cn 12058 |
. . . . . . . . . . 11
⊢ 4 ∈
ℂ |
48 | 47 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → 4 ∈ ℂ) |
49 | | 4ne0 12081 |
. . . . . . . . . . 11
⊢ 4 ≠
0 |
50 | 49 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → 4 ≠ 0) |
51 | 38, 48, 50 | divcan2d 11753 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → (4 · (𝑟 / 4)) = 𝑟) |
52 | 46, 51 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → (4 · ((𝑟 / 2) / 2)) = 𝑟) |
53 | 52 | oveq2d 7291 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))) = ((vol*‘𝑧) + 𝑟)) |
54 | 36, 53 | breqtrd 5100 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) ∧ 𝑟 ∈
ℝ+) → ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)) |
55 | 54 | ralrimiva 3103 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ∀𝑟
∈ ℝ+ ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)) |
56 | | inss1 4162 |
. . . . . . . . 9
⊢ (𝑧 ∩ ∪ ran ((,) ∘ 𝐹)) ⊆ 𝑧 |
57 | 56 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (𝑧 ∩
∪ ran ((,) ∘ 𝐹)) ⊆ 𝑧) |
58 | | ovolsscl 24650 |
. . . . . . . 8
⊢ (((𝑧 ∩ ∪ ran ((,) ∘ 𝐹)) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∩ ∪ ran ((,) ∘ 𝐹))) ∈ ℝ) |
59 | 57, 14, 15, 58 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) ∈
ℝ) |
60 | | difssd 4067 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (𝑧 ∖
∪ ran ((,) ∘ 𝐹)) ⊆ 𝑧) |
61 | | ovolsscl 24650 |
. . . . . . . 8
⊢ (((𝑧 ∖ ∪ ran ((,) ∘ 𝐹)) ⊆ 𝑧 ∧ 𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) →
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹))) ∈ ℝ) |
62 | 60, 14, 15, 61 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (vol*‘(𝑧 ∖ ∪ ran
((,) ∘ 𝐹))) ∈
ℝ) |
63 | 59, 62 | readdcld 11004 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ∈ ℝ) |
64 | | alrple 12940 |
. . . . . 6
⊢
((((vol*‘(𝑧
∩ ∪ ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ∖ ∪ ran
((,) ∘ 𝐹)))) ∈
ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ∩ ∪ ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ∖ ∪ ran
((,) ∘ 𝐹)))) ≤
(vol*‘𝑧) ↔
∀𝑟 ∈
ℝ+ ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))) |
65 | 63, 15, 64 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → (((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+
((vol*‘(𝑧 ∩ ∪ ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ∖ ∪ ran
((,) ∘ 𝐹)))) ≤
((vol*‘𝑧) + 𝑟))) |
66 | 55, 65 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧
(vol*‘𝑧) ∈
ℝ)) → ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)) |
67 | 66 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝒫 ℝ) →
((vol*‘𝑧) ∈
ℝ → ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))) |
68 | 67 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ →
((vol*‘(𝑧 ∩ ∪ ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ∖ ∪ ran
((,) ∘ 𝐹)))) ≤
(vol*‘𝑧))) |
69 | | ismbl2 24691 |
. 2
⊢ (∪ ran ((,) ∘ 𝐹) ∈ dom vol ↔ (∪ ran ((,) ∘ 𝐹) ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫
ℝ((vol*‘𝑧)
∈ ℝ → ((vol*‘(𝑧 ∩ ∪ ran ((,)
∘ 𝐹))) +
(vol*‘(𝑧 ∖
∪ ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))) |
70 | 12, 68, 69 | sylanbrc 583 |
1
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ∈ dom vol) |