MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombl Structured version   Visualization version   GIF version

Theorem uniioombl 24953
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 24917.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioombl (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioombl
Dummy variables 𝑓 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 13364 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 uniioombl.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 inss2 4189 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 rexpssxrxp 11200 . . . . . . 7 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
53, 4sstri 3953 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
6 fss 6685 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
72, 5, 6sylancl 586 . . . . 5 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
8 fco 6692 . . . . 5 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
91, 7, 8sylancr 587 . . . 4 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
109frnd 6676 . . 3 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
11 sspwuni 5060 . . 3 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
1210, 11sylib 217 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
13 elpwi 4567 . . . . . . . . . 10 (𝑧 ∈ 𝒫 ℝ → 𝑧 ⊆ ℝ)
1413ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → 𝑧 ⊆ ℝ)
15 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘𝑧) ∈ ℝ)
16 rphalfcl 12942 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
1716rphalfcld 12969 . . . . . . . . 9 (𝑟 ∈ ℝ+ → ((𝑟 / 2) / 2) ∈ ℝ+)
18 eqid 2736 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1918ovolgelb 24844 . . . . . . . . 9 ((𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ ∧ ((𝑟 / 2) / 2) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
2014, 15, 17, 19syl2an3an 1422 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))
212ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
22 uniioombl.2 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
2322ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
24 uniioombl.3 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
25 eqid 2736 . . . . . . . . 9 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐹)
2615adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (vol*‘𝑧) ∈ ℝ)
2726adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (vol*‘𝑧) ∈ ℝ)
2816adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
2928adantr 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → (𝑟 / 2) ∈ ℝ+)
3029rphalfcld 12969 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((𝑟 / 2) / 2) ∈ ℝ+)
31 elmapi 8787 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3231ad2antrl 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
33 simprrl 779 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → 𝑧 ran ((,) ∘ 𝑓))
34 simprrr 780 . . . . . . . . 9 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2)))
3521, 23, 24, 25, 27, 30, 32, 33, 18, 34uniioombllem6 24952 . . . . . . . 8 ((((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑧 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑧) + ((𝑟 / 2) / 2))))) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
3620, 35rexlimddv 3158 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))))
37 rpcn 12925 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+𝑟 ∈ ℂ)
3837adantl 482 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℂ)
39 2cnd 12231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ∈ ℂ)
40 2ne0 12257 . . . . . . . . . . . . 13 2 ≠ 0
4140a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 2 ≠ 0)
4238, 39, 39, 41, 41divdiv1d 11962 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / (2 · 2)))
43 2t2e4 12317 . . . . . . . . . . . 12 (2 · 2) = 4
4443oveq2i 7368 . . . . . . . . . . 11 (𝑟 / (2 · 2)) = (𝑟 / 4)
4542, 44eqtrdi 2792 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((𝑟 / 2) / 2) = (𝑟 / 4))
4645oveq2d 7373 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = (4 · (𝑟 / 4)))
47 4cn 12238 . . . . . . . . . . 11 4 ∈ ℂ
4847a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ∈ ℂ)
49 4ne0 12261 . . . . . . . . . . 11 4 ≠ 0
5049a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → 4 ≠ 0)
5138, 48, 50divcan2d 11933 . . . . . . . . 9 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · (𝑟 / 4)) = 𝑟)
5246, 51eqtrd 2776 . . . . . . . 8 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → (4 · ((𝑟 / 2) / 2)) = 𝑟)
5352oveq2d 7373 . . . . . . 7 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘𝑧) + (4 · ((𝑟 / 2) / 2))) = ((vol*‘𝑧) + 𝑟))
5436, 53breqtrd 5131 . . . . . 6 (((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) ∧ 𝑟 ∈ ℝ+) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
5554ralrimiva 3143 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟))
56 inss1 4188 . . . . . . . . 9 (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧
5756a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
58 ovolsscl 24850 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
5957, 14, 15, 58syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
60 difssd 4092 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧)
61 ovolsscl 24850 . . . . . . . 8 (((𝑧 ran ((,) ∘ 𝐹)) ⊆ 𝑧𝑧 ⊆ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6260, 14, 15, 61syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (vol*‘(𝑧 ran ((,) ∘ 𝐹))) ∈ ℝ)
6359, 62readdcld 11184 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ)
64 alrple 13125 . . . . . 6 ((((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ∈ ℝ ∧ (vol*‘𝑧) ∈ ℝ) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6563, 15, 64syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → (((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧) ↔ ∀𝑟 ∈ ℝ+ ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ ((vol*‘𝑧) + 𝑟)))
6655, 65mpbird 256 . . . 4 ((𝜑 ∧ (𝑧 ∈ 𝒫 ℝ ∧ (vol*‘𝑧) ∈ ℝ)) → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))
6766expr 457 . . 3 ((𝜑𝑧 ∈ 𝒫 ℝ) → ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
6867ralrimiva 3143 . 2 (𝜑 → ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧)))
69 ismbl2 24891 . 2 ( ran ((,) ∘ 𝐹) ∈ dom vol ↔ ( ran ((,) ∘ 𝐹) ⊆ ℝ ∧ ∀𝑧 ∈ 𝒫 ℝ((vol*‘𝑧) ∈ ℝ → ((vol*‘(𝑧 ran ((,) ∘ 𝐹))) + (vol*‘(𝑧 ran ((,) ∘ 𝐹)))) ≤ (vol*‘𝑧))))
7012, 68, 69sylanbrc 583 1 (𝜑 ran ((,) ∘ 𝐹) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  cin 3909  wss 3910  𝒫 cpw 4560   cuni 4865  Disj wdisj 5070   class class class wbr 5105   × cxp 5631  dom cdm 5633  ran crn 5634  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  +crp 12915  (,)cioo 13264  seqcseq 13906  abscabs 15119  vol*covol 24826  volcvol 24827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cmp 22738  df-ovol 24828  df-vol 24829
This theorem is referenced by:  uniiccmbl  24954
  Copyright terms: Public domain W3C validator