MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfioo Structured version   Visualization version   GIF version

Theorem ovolfioo 25396
Description: Unpack the interval covering property of the outer measure definition. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfioo ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolfioo
StepHypRef Expression
1 ioof 13349 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 inss2 4187 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 11164 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3940 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 6672 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 691 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 6680 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
81, 6, 7sylancr 587 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
9 ffn 6656 . . . . 5 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
10 fniunfv 7187 . . . . 5 (((,) ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
1211sseq2d 3963 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1312adantl 481 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
14 dfss3 3919 . . 3 (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛))
15 ssel2 3925 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 4945 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛))
17 rexr 11165 . . . . . . . . . 10 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
1817ad2antrr 726 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ*)
19 fvco3 6927 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
20 ffvelcdm 7020 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
2120elin2d 4154 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
22 1st2nd2 7966 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2321, 22syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2423fveq2d 6832 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
25 df-ov 7355 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2624, 25eqtr4di 2786 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2719, 26eqtrd 2768 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2827eleq2d 2819 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))))
29 ovolfcl 25395 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
30 rexr 11165 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛)) ∈ ℝ → (1st ‘(𝐹𝑛)) ∈ ℝ*)
31 rexr 11165 . . . . . . . . . . . . . . 15 ((2nd ‘(𝐹𝑛)) ∈ ℝ → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
32 elioo1 13287 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ*) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3330, 31, 32syl2an 596 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
34 3anass 1094 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3533, 34bitrdi 287 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
36353adant3 1132 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3729, 36syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3828, 37bitrd 279 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3938adantll 714 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
4018, 39mpbirand 707 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4140rexbidva 3155 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4216, 41bitrid 283 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4315, 42sylan 580 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4443an32s 652 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4544ralbidva 3154 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4614, 45bitrid 283 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4713, 46bitr3d 281 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cin 3897  wss 3898  𝒫 cpw 4549  cop 4581   cuni 4858   ciun 4941   class class class wbr 5093   × cxp 5617  ran crn 5620  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  cr 11012  *cxr 11152   < clt 11153  cle 11154  cn 12132  (,)cioo 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-ioo 13251
This theorem is referenced by:  ovollb2lem  25417  ovolunlem1  25426  ovoliunlem2  25432  ovolshftlem1  25438  ovolscalem1  25442  ioombl1lem4  25490
  Copyright terms: Public domain W3C validator