MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolfioo Structured version   Visualization version   GIF version

Theorem ovolfioo 24070
Description: Unpack the interval covering property of the outer measure definition. (Contributed by Mario Carneiro, 16-Mar-2014.)
Assertion
Ref Expression
ovolfioo ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Distinct variable groups:   𝑧,𝑛,𝐴   𝑛,𝐹,𝑧

Proof of Theorem ovolfioo
StepHypRef Expression
1 ioof 12838 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 inss2 4208 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
3 rexpssxrxp 10688 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
42, 3sstri 3978 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
5 fss 6529 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
64, 5mpan2 689 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
7 fco 6533 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
81, 6, 7sylancr 589 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
9 ffn 6516 . . . . 5 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
10 fniunfv 7008 . . . . 5 (((,) ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
118, 9, 103syl 18 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
1211sseq2d 4001 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
1312adantl 484 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ 𝐴 ran ((,) ∘ 𝐹)))
14 dfss3 3958 . . 3 (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛))
15 ssel2 3964 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
16 eliun 4925 . . . . . . 7 (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛))
17 rexr 10689 . . . . . . . . . 10 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
1817ad2antrr 724 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℝ*)
19 fvco3 6762 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
20 ffvelrn 6851 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ( ≤ ∩ (ℝ × ℝ)))
2120elin2d 4178 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
22 1st2nd2 7730 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2321, 22syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2423fveq2d 6676 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
25 df-ov 7161 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
2624, 25syl6eqr 2876 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2719, 26eqtrd 2858 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
2827eleq2d 2900 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ 𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))))
29 ovolfcl 24069 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
30 rexr 10689 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑛)) ∈ ℝ → (1st ‘(𝐹𝑛)) ∈ ℝ*)
31 rexr 10689 . . . . . . . . . . . . . . 15 ((2nd ‘(𝐹𝑛)) ∈ ℝ → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
32 elioo1 12781 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ*) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3330, 31, 32syl2an 597 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
34 3anass 1091 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ* ∧ (1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
3533, 34syl6bb 289 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
36353adant3 1128 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3729, 36syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3828, 37bitrd 281 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
3938adantll 712 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ (𝑧 ∈ ℝ* ∧ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛))))))
4018, 39mpbirand 705 . . . . . . . 8 (((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑛 ∈ ℕ) → (𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4140rexbidva 3298 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∃𝑛 ∈ ℕ 𝑧 ∈ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4216, 41syl5bb 285 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4315, 42sylan 582 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4443an32s 650 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ∧ 𝑧𝐴) → (𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∃𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4544ralbidva 3198 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (∀𝑧𝐴 𝑧 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4614, 45syl5bb 285 . 2 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
4713, 46bitr3d 283 1 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑛 ∈ ℕ ((1st ‘(𝐹𝑛)) < 𝑧𝑧 < (2nd ‘(𝐹𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  cin 3937  wss 3938  𝒫 cpw 4541  cop 4575   cuni 4840   ciun 4921   class class class wbr 5068   × cxp 5555  ran crn 5558  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  cr 10538  *cxr 10676   < clt 10677  cle 10678  cn 11640  (,)cioo 12741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-ioo 12745
This theorem is referenced by:  ovollb2lem  24091  ovolunlem1  24100  ovoliunlem2  24106  ovolshftlem1  24112  ovolscalem1  24116  ioombl1lem4  24164
  Copyright terms: Public domain W3C validator