Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem2 Structured version   Visualization version   GIF version

Theorem ovolval4lem2 46655
Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 46652, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem2.a (𝜑𝐴 ⊆ ℝ)
ovolval4lem2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
ovolval4lem2.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
Assertion
Ref Expression
ovolval4lem2 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑛,𝐺   𝑓,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐺(𝑦,𝑓)   𝑀(𝑦,𝑓,𝑛)

Proof of Theorem ovolval4lem2
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval4lem2.a . 2 (𝜑𝐴 ⊆ ℝ)
2 ovolval4lem2.m . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
3 iftrue 4497 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (2nd ‘(𝑓𝑛)))
43opeq2d 4847 . . . . . . . . . . . . . 14 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
54adantl 481 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
6 df-br 5111 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
76biimpi 216 . . . . . . . . . . . . . 14 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
87adantl 481 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
95, 8eqeltrd 2829 . . . . . . . . . . . 12 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
10 iffalse 4500 . . . . . . . . . . . . . . 15 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (1st ‘(𝑓𝑛)))
1110opeq2d 4847 . . . . . . . . . . . . . 14 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
1211adantl 481 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
13 elmapi 8825 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1413ffvelcdmda 7059 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
15 xp1st 8003 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1716leidd 11751 . . . . . . . . . . . . . . 15 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)))
18 df-br 5111 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
1917, 18sylib 218 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2019adantr 480 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2112, 20eqeltrd 2829 . . . . . . . . . . . 12 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
229, 21pm2.61dan 812 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
23 xp2nd 8004 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2414, 23syl 17 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2524, 16ifcld 4538 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ)
26 opelxpi 5678 . . . . . . . . . . . 12 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2716, 25, 26syl2anc 584 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2822, 27elind 4166 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
29 ovolval4lem2.g . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
3028, 29fmptd 7089 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
31 reex 11166 . . . . . . . . . . . . 13 ℝ ∈ V
3231, 31xpex 7732 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
3332inex2 5276 . . . . . . . . . . 11 ( ≤ ∩ (ℝ × ℝ)) ∈ V
3433a1i 11 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
35 nnex 12199 . . . . . . . . . . 11 ℕ ∈ V
3635a1i 11 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ℕ ∈ V)
3734, 36elmapd 8816 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
3830, 37mpbird 257 . . . . . . . 8 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
3938adantr 480 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
40 simpr 484 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
41 rexpssxrxp 11226 . . . . . . . . . . . . . . 15 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4241a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
4313, 42fssd 6708 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
44 2fveq3 6866 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (1st ‘(𝑓𝑘)) = (1st ‘(𝑓𝑛)))
45 2fveq3 6866 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (2nd ‘(𝑓𝑘)) = (2nd ‘(𝑓𝑛)))
4644, 45breq12d 5123 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)) ↔ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
4746cbvrabv 3419 . . . . . . . . . . . . 13 {𝑘 ∈ ℕ ∣ (1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘))} = {𝑛 ∈ ℕ ∣ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))}
4843, 29, 47ovolval4lem1 46654 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺))))
4948simpld 494 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5049adantr 480 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5140, 50sseqtrd 3986 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝐺))
5251adantrr 717 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ((,) ∘ 𝐺))
53 simpr 484 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
5448simprd 495 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺)))
55 coass 6241 . . . . . . . . . . . . . 14 ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓))
5655a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓)))
57 coass 6241 . . . . . . . . . . . . . 14 ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺))
5857a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺)))
5954, 56, 583eqtr4d 2775 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝐺))
6059fveq2d 6865 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6160adantr 480 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6253, 61eqtrd 2765 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6362adantrl 716 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6452, 63jca 511 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
65 coeq2 5825 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((,) ∘ 𝑔) = ((,) ∘ 𝐺))
6665rneqd 5905 . . . . . . . . . . 11 (𝑔 = 𝐺 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6766unieqd 4887 . . . . . . . . . 10 (𝑔 = 𝐺 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6867sseq2d 3982 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝐺)))
69 coeq2 5825 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝐺))
7069fveq2d 6865 . . . . . . . . . 10 (𝑔 = 𝐺 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
7170eqeq2d 2741 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
7268, 71anbi12d 632 . . . . . . . 8 (𝑔 = 𝐺 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))))
7372rspcev 3591 . . . . . . 7 ((𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7439, 64, 73syl2anc 584 . . . . . 6 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7574rexlimiva 3127 . . . . 5 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
76 inss2 4204 . . . . . . . . . 10 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
77 mapss 8865 . . . . . . . . . 10 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
7832, 76, 77mp2an 692 . . . . . . . . 9 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
7978sseli 3945 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑔 ∈ ((ℝ × ℝ) ↑m ℕ))
8079adantr 480 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → 𝑔 ∈ ((ℝ × ℝ) ↑m ℕ))
81 simpr 484 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
82 coeq2 5825 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((,) ∘ 𝑓) = ((,) ∘ 𝑔))
8382rneqd 5905 . . . . . . . . . . 11 (𝑓 = 𝑔 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8483unieqd 4887 . . . . . . . . . 10 (𝑓 = 𝑔 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8584sseq2d 3982 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝑔)))
86 coeq2 5825 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝑔))
8786fveq2d 6865 . . . . . . . . . 10 (𝑓 = 𝑔 → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))
8887eqeq2d 2741 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
8985, 88anbi12d 632 . . . . . . . 8 (𝑓 = 𝑔 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
9089rspcev 3591 . . . . . . 7 ((𝑔 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9180, 81, 90syl2anc 584 . . . . . 6 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9291rexlimiva 3127 . . . . 5 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9375, 92impbii 209 . . . 4 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
9493rabbii 3414 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
952, 94eqtri 2753 . 2 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
961, 95ovolval3 46652 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  ifcif 4491  cop 4598   cuni 4874   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  m cmap 8802  infcinf 9399  cr 11074  *cxr 11214   < clt 11215  cle 11216  cn 12193  (,)cioo 13313  vol*covol 25370  volcvol 25371  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-sumge0 46368
This theorem is referenced by:  ovolval4  46656
  Copyright terms: Public domain W3C validator