Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem2 Structured version   Visualization version   GIF version

Theorem ovolval4lem2 42926
Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 42923, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem2.a (𝜑𝐴 ⊆ ℝ)
ovolval4lem2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
ovolval4lem2.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
Assertion
Ref Expression
ovolval4lem2 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑛,𝐺   𝑓,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐺(𝑦,𝑓)   𝑀(𝑦,𝑓,𝑛)

Proof of Theorem ovolval4lem2
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval4lem2.a . 2 (𝜑𝐴 ⊆ ℝ)
2 ovolval4lem2.m . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
3 iftrue 4472 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (2nd ‘(𝑓𝑛)))
43opeq2d 4803 . . . . . . . . . . . . . 14 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
54adantl 484 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
6 df-br 5059 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
76biimpi 218 . . . . . . . . . . . . . 14 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
87adantl 484 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
95, 8eqeltrd 2913 . . . . . . . . . . . 12 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
10 iffalse 4475 . . . . . . . . . . . . . . 15 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (1st ‘(𝑓𝑛)))
1110opeq2d 4803 . . . . . . . . . . . . . 14 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
1211adantl 484 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
13 elmapi 8422 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1413ffvelrnda 6845 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
15 xp1st 7715 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1716leidd 11200 . . . . . . . . . . . . . . 15 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)))
18 df-br 5059 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
1917, 18sylib 220 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2019adantr 483 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2112, 20eqeltrd 2913 . . . . . . . . . . . 12 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
229, 21pm2.61dan 811 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
23 xp2nd 7716 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2414, 23syl 17 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2524, 16ifcld 4511 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ)
26 opelxpi 5586 . . . . . . . . . . . 12 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2716, 25, 26syl2anc 586 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2822, 27elind 4170 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
29 ovolval4lem2.g . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
3028, 29fmptd 6872 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
31 reex 10622 . . . . . . . . . . . . 13 ℝ ∈ V
3231, 31xpex 7470 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
3332inex2 5214 . . . . . . . . . . 11 ( ≤ ∩ (ℝ × ℝ)) ∈ V
3433a1i 11 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
35 nnex 11638 . . . . . . . . . . 11 ℕ ∈ V
3635a1i 11 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ℕ ∈ V)
3734, 36elmapd 8414 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
3830, 37mpbird 259 . . . . . . . 8 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
3938adantr 483 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
40 simpr 487 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
41 rexpssxrxp 10680 . . . . . . . . . . . . . . 15 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4241a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
4313, 42fssd 6522 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
44 2fveq3 6669 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (1st ‘(𝑓𝑘)) = (1st ‘(𝑓𝑛)))
45 2fveq3 6669 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (2nd ‘(𝑓𝑘)) = (2nd ‘(𝑓𝑛)))
4644, 45breq12d 5071 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)) ↔ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
4746cbvrabv 3491 . . . . . . . . . . . . 13 {𝑘 ∈ ℕ ∣ (1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘))} = {𝑛 ∈ ℕ ∣ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))}
4843, 29, 47ovolval4lem1 42925 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺))))
4948simpld 497 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5049adantr 483 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5140, 50sseqtrd 4006 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝐺))
5251adantrr 715 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ((,) ∘ 𝐺))
53 simpr 487 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
5448simprd 498 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺)))
55 coass 6112 . . . . . . . . . . . . . 14 ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓))
5655a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓)))
57 coass 6112 . . . . . . . . . . . . . 14 ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺))
5857a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺)))
5954, 56, 583eqtr4d 2866 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝐺))
6059fveq2d 6668 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6160adantr 483 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6253, 61eqtrd 2856 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6362adantrl 714 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6452, 63jca 514 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
65 coeq2 5723 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((,) ∘ 𝑔) = ((,) ∘ 𝐺))
6665rneqd 5802 . . . . . . . . . . 11 (𝑔 = 𝐺 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6766unieqd 4841 . . . . . . . . . 10 (𝑔 = 𝐺 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6867sseq2d 3998 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝐺)))
69 coeq2 5723 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝐺))
7069fveq2d 6668 . . . . . . . . . 10 (𝑔 = 𝐺 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
7170eqeq2d 2832 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
7268, 71anbi12d 632 . . . . . . . 8 (𝑔 = 𝐺 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))))
7372rspcev 3622 . . . . . . 7 ((𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7439, 64, 73syl2anc 586 . . . . . 6 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7574rexlimiva 3281 . . . . 5 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
76 inss2 4205 . . . . . . . . . 10 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
77 mapss 8447 . . . . . . . . . 10 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
7832, 76, 77mp2an 690 . . . . . . . . 9 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
7978sseli 3962 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑔 ∈ ((ℝ × ℝ) ↑m ℕ))
8079adantr 483 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → 𝑔 ∈ ((ℝ × ℝ) ↑m ℕ))
81 simpr 487 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
82 coeq2 5723 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((,) ∘ 𝑓) = ((,) ∘ 𝑔))
8382rneqd 5802 . . . . . . . . . . 11 (𝑓 = 𝑔 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8483unieqd 4841 . . . . . . . . . 10 (𝑓 = 𝑔 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8584sseq2d 3998 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝑔)))
86 coeq2 5723 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝑔))
8786fveq2d 6668 . . . . . . . . . 10 (𝑓 = 𝑔 → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))
8887eqeq2d 2832 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
8985, 88anbi12d 632 . . . . . . . 8 (𝑓 = 𝑔 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
9089rspcev 3622 . . . . . . 7 ((𝑔 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9180, 81, 90syl2anc 586 . . . . . 6 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9291rexlimiva 3281 . . . . 5 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9375, 92impbii 211 . . . 4 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
9493rabbii 3473 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
952, 94eqtri 2844 . 2 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
961, 95ovolval3 42923 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  cin 3934  wss 3935  ifcif 4466  cop 4566   cuni 4831   class class class wbr 5058  cmpt 5138   × cxp 5547  ran crn 5550  ccom 5553  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  m cmap 8400  infcinf 8899  cr 10530  *cxr 10668   < clt 10669  cle 10670  cn 11632  (,)cioo 12732  vol*covol 24057  volcvol 24058  Σ^csumge0 42638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-rest 16690  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-cmp 21989  df-ovol 24059  df-vol 24060  df-sumge0 42639
This theorem is referenced by:  ovolval4  42927
  Copyright terms: Public domain W3C validator