Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem2 Structured version   Visualization version   GIF version

Theorem ovolval4lem2 45366
Description: The value of the Lebesgue outer measure for subsets of the reals. Similar to ovolval3 45363, but here 𝑓 is may represent unordered interval bounds. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem2.a (𝜑𝐴 ⊆ ℝ)
ovolval4lem2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
ovolval4lem2.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
Assertion
Ref Expression
ovolval4lem2 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝑛,𝐺   𝑓,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐺(𝑦,𝑓)   𝑀(𝑦,𝑓,𝑛)

Proof of Theorem ovolval4lem2
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolval4lem2.a . 2 (𝜑𝐴 ⊆ ℝ)
2 ovolval4lem2.m . . 3 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
3 iftrue 4535 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (2nd ‘(𝑓𝑛)))
43opeq2d 4881 . . . . . . . . . . . . . 14 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
54adantl 483 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
6 df-br 5150 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
76biimpi 215 . . . . . . . . . . . . . 14 ((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
87adantl 483 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩ ∈ ≤ )
95, 8eqeltrd 2834 . . . . . . . . . . . 12 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
10 iffalse 4538 . . . . . . . . . . . . . . 15 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) = (1st ‘(𝑓𝑛)))
1110opeq2d 4881 . . . . . . . . . . . . . 14 (¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
1211adantl 483 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ = ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩)
13 elmapi 8843 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1413ffvelcdmda 7087 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
15 xp1st 8007 . . . . . . . . . . . . . . . . 17 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
1716leidd 11780 . . . . . . . . . . . . . . 15 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)))
18 df-br 5150 . . . . . . . . . . . . . . 15 ((1st ‘(𝑓𝑛)) ≤ (1st ‘(𝑓𝑛)) ↔ ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
1917, 18sylib 217 . . . . . . . . . . . . . 14 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2019adantr 482 . . . . . . . . . . . . 13 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))⟩ ∈ ≤ )
2112, 20eqeltrd 2834 . . . . . . . . . . . 12 (((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) ∧ ¬ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
229, 21pm2.61dan 812 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ≤ )
23 xp2nd 8008 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2414, 23syl 17 . . . . . . . . . . . . 13 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2524, 16ifcld 4575 . . . . . . . . . . . 12 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ)
26 opelxpi 5714 . . . . . . . . . . . 12 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛))) ∈ ℝ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2716, 25, 26syl2anc 585 . . . . . . . . . . 11 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ (ℝ × ℝ))
2822, 27elind 4195 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
29 ovolval4lem2.g . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛)), (1st ‘(𝑓𝑛)))⟩)
3028, 29fmptd 7114 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
31 reex 11201 . . . . . . . . . . . . 13 ℝ ∈ V
3231, 31xpex 7740 . . . . . . . . . . . 12 (ℝ × ℝ) ∈ V
3332inex2 5319 . . . . . . . . . . 11 ( ≤ ∩ (ℝ × ℝ)) ∈ V
3433a1i 11 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
35 nnex 12218 . . . . . . . . . . 11 ℕ ∈ V
3635a1i 11 . . . . . . . . . 10 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ℕ ∈ V)
3734, 36elmapd 8834 . . . . . . . . 9 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
3830, 37mpbird 257 . . . . . . . 8 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
3938adantr 482 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
40 simpr 486 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝑓))
41 rexpssxrxp 11259 . . . . . . . . . . . . . . 15 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4241a1i 11 . . . . . . . . . . . . . 14 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
4313, 42fssd 6736 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
44 2fveq3 6897 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (1st ‘(𝑓𝑘)) = (1st ‘(𝑓𝑛)))
45 2fveq3 6897 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → (2nd ‘(𝑓𝑘)) = (2nd ‘(𝑓𝑛)))
4644, 45breq12d 5162 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → ((1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘)) ↔ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
4746cbvrabv 3443 . . . . . . . . . . . . 13 {𝑘 ∈ ℕ ∣ (1st ‘(𝑓𝑘)) ≤ (2nd ‘(𝑓𝑘))} = {𝑛 ∈ ℕ ∣ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))}
4843, 29, 47ovolval4lem1 45365 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ( ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺))))
4948simpld 496 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5049adantr 482 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
5140, 50sseqtrd 4023 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝐴 ran ((,) ∘ 𝑓)) → 𝐴 ran ((,) ∘ 𝐺))
5251adantrr 716 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝐴 ran ((,) ∘ 𝐺))
53 simpr 486 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))
5448simprd 497 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (vol ∘ ((,) ∘ 𝑓)) = (vol ∘ ((,) ∘ 𝐺)))
55 coass 6265 . . . . . . . . . . . . . 14 ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓))
5655a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (vol ∘ ((,) ∘ 𝑓)))
57 coass 6265 . . . . . . . . . . . . . 14 ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺))
5857a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝐺) = (vol ∘ ((,) ∘ 𝐺)))
5954, 56, 583eqtr4d 2783 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝐺))
6059fveq2d 6896 . . . . . . . . . . 11 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6160adantr 482 . . . . . . . . . 10 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6253, 61eqtrd 2773 . . . . . . . . 9 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6362adantrl 715 . . . . . . . 8 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
6452, 63jca 513 . . . . . . 7 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
65 coeq2 5859 . . . . . . . . . . . 12 (𝑔 = 𝐺 → ((,) ∘ 𝑔) = ((,) ∘ 𝐺))
6665rneqd 5938 . . . . . . . . . . 11 (𝑔 = 𝐺 → ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6766unieqd 4923 . . . . . . . . . 10 (𝑔 = 𝐺 ran ((,) ∘ 𝑔) = ran ((,) ∘ 𝐺))
6867sseq2d 4015 . . . . . . . . 9 (𝑔 = 𝐺 → (𝐴 ran ((,) ∘ 𝑔) ↔ 𝐴 ran ((,) ∘ 𝐺)))
69 coeq2 5859 . . . . . . . . . . 11 (𝑔 = 𝐺 → ((vol ∘ (,)) ∘ 𝑔) = ((vol ∘ (,)) ∘ 𝐺))
7069fveq2d 6896 . . . . . . . . . 10 (𝑔 = 𝐺 → (Σ^‘((vol ∘ (,)) ∘ 𝑔)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
7170eqeq2d 2744 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
7268, 71anbi12d 632 . . . . . . . 8 (𝑔 = 𝐺 → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) ↔ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))))
7372rspcev 3613 . . . . . . 7 ((𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7439, 64, 73syl2anc 585 . . . . . 6 ((𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
7574rexlimiva 3148 . . . . 5 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
76 inss2 4230 . . . . . . . . . 10 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
77 mapss 8883 . . . . . . . . . 10 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
7832, 76, 77mp2an 691 . . . . . . . . 9 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
7978sseli 3979 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑔 ∈ ((ℝ × ℝ) ↑m ℕ))
8079adantr 482 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → 𝑔 ∈ ((ℝ × ℝ) ↑m ℕ))
81 simpr 486 . . . . . . 7 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
82 coeq2 5859 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((,) ∘ 𝑓) = ((,) ∘ 𝑔))
8382rneqd 5938 . . . . . . . . . . 11 (𝑓 = 𝑔 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8483unieqd 4923 . . . . . . . . . 10 (𝑓 = 𝑔 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝑔))
8584sseq2d 4015 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝑔)))
86 coeq2 5859 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝑔))
8786fveq2d 6896 . . . . . . . . . 10 (𝑓 = 𝑔 → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))
8887eqeq2d 2744 . . . . . . . . 9 (𝑓 = 𝑔 → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
8985, 88anbi12d 632 . . . . . . . 8 (𝑓 = 𝑔 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))))
9089rspcev 3613 . . . . . . 7 ((𝑔 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9180, 81, 90syl2anc 585 . . . . . 6 ((𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9291rexlimiva 3148 . . . . 5 (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
9375, 92impbii 208 . . . 4 (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔))))
9493rabbii 3439 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
952, 94eqtri 2761 . 2 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑔)))}
961, 95ovolval3 45363 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wrex 3071  {crab 3433  Vcvv 3475  cin 3948  wss 3949  ifcif 4529  cop 4635   cuni 4909   class class class wbr 5149  cmpt 5232   × cxp 5675  ran crn 5678  ccom 5681  wf 6540  cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  m cmap 8820  infcinf 9436  cr 11109  *cxr 11247   < clt 11248  cle 11249  cn 12212  (,)cioo 13324  vol*covol 24979  volcvol 24980  Σ^csumge0 45078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-rest 17368  df-topgen 17389  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-top 22396  df-topon 22413  df-bases 22449  df-cmp 22891  df-ovol 24981  df-vol 24982  df-sumge0 45079
This theorem is referenced by:  ovolval4  45367
  Copyright terms: Public domain W3C validator