MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Visualization version   GIF version

Theorem uniioombllem3a 25604
Description: Lemma for uniioombl 25609. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3a (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Distinct variable groups:   𝑥,𝑗,𝐹   𝑗,𝐺,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑗,𝑥   𝑗,𝑀,𝑥   𝜑,𝑗,𝑥   𝑇,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑗)   𝐸(𝑥,𝑗)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2 ioof 13478 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 4231 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 rexpssxrxp 11309 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
64, 5sstri 3989 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
7 fss 6744 . . . . . . 7 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
83, 6, 7sylancl 584 . . . . . 6 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
9 fco 6752 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
102, 8, 9sylancr 585 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
11 ffun 6731 . . . . 5 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
12 funiunfv 7263 . . . . 5 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
1310, 11, 123syl 18 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
14 elfznn 13584 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
15 fvco3 7001 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
163, 14, 15syl2an 594 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
1716iuneq2dv 5025 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
1813, 17eqtr3d 2768 . . 3 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
191, 18eqtrid 2778 . 2 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
20 ffvelcdm 7095 . . . . . . . . . . . 12 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
213, 14, 20syl2an 594 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
2221elin2d 4200 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
23 1st2nd2 8042 . . . . . . . . . 10 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2524fveq2d 6905 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
26 df-ov 7427 . . . . . . . 8 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2725, 26eqtr4di 2784 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
28 ioossre 13439 . . . . . . 7 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
2927, 28eqsstrdi 4034 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
3029ralrimiva 3136 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
31 iunss 5053 . . . . 5 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3230, 31sylibr 233 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3319, 32eqsstrd 4018 . . 3 (𝜑𝐾 ⊆ ℝ)
34 fzfid 13993 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3527fveq2d 6905 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
36 ovolfcl 25486 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
373, 14, 36syl2an 594 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
38 ovolioo 25588 . . . . . . 7 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
3937, 38syl 17 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4035, 39eqtrd 2766 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4137simp2d 1140 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
4237simp1d 1139 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
4341, 42resubcld 11692 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
4440, 43eqeltrd 2826 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4534, 44fsumrecl 15738 . . 3 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4619fveq2d 6905 . . . 4 (𝜑 → (vol*‘𝐾) = (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
4729, 44jca 510 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
4847ralrimiva 3136 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
49 ovolfiniun 25521 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5034, 48, 49syl2anc 582 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5146, 50eqbrtrd 5175 . . 3 (𝜑 → (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
52 ovollecl 25503 . . 3 ((𝐾 ⊆ ℝ ∧ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ ∧ (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗)))) → (vol*‘𝐾) ∈ ℝ)
5333, 45, 51, 52syl3anc 1368 . 2 (𝜑 → (vol*‘𝐾) ∈ ℝ)
5419, 53jca 510 1 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  cin 3946  wss 3947  𝒫 cpw 4607  cop 4639   cuni 4913   ciun 5001  Disj wdisj 5118   class class class wbr 5153   × cxp 5680  ran crn 5683  cima 5685  ccom 5686  Fun wfun 6548  wf 6550  cfv 6554  (class class class)co 7424  1st c1st 8001  2nd c2nd 8002  Fincfn 8974  supcsup 9483  cr 11157  1c1 11159   + caddc 11161  *cxr 11297   < clt 11298  cle 11299  cmin 11494  cn 12264  +crp 13028  (,)cioo 13378  ...cfz 13538  seqcseq 14021  abscabs 15239  Σcsu 15690  vol*covol 25482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-clim 15490  df-rlim 15491  df-sum 15691  df-rest 17437  df-topgen 17458  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-top 22887  df-topon 22904  df-bases 22940  df-cmp 23382  df-ovol 25484  df-vol 25485
This theorem is referenced by:  uniioombllem3  25605
  Copyright terms: Public domain W3C validator