MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Visualization version   GIF version

Theorem uniioombllem3a 24112
Description: Lemma for uniioombl 24117. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3a (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Distinct variable groups:   𝑥,𝑗,𝐹   𝑗,𝐺,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑗,𝑥   𝑗,𝑀,𝑥   𝜑,𝑗,𝑥   𝑇,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑗)   𝐸(𝑥,𝑗)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2 ioof 12823 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 4203 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 rexpssxrxp 10674 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
64, 5sstri 3973 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
7 fss 6520 . . . . . . 7 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
83, 6, 7sylancl 586 . . . . . 6 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
9 fco 6524 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
102, 8, 9sylancr 587 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
11 ffun 6510 . . . . 5 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
12 funiunfv 6998 . . . . 5 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
1310, 11, 123syl 18 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
14 elfznn 12924 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
15 fvco3 6753 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
163, 14, 15syl2an 595 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
1716iuneq2dv 4934 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
1813, 17eqtr3d 2855 . . 3 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
191, 18syl5eq 2865 . 2 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
20 ffvelrn 6841 . . . . . . . . . . . 12 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
213, 14, 20syl2an 595 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
2221elin2d 4173 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
23 1st2nd2 7717 . . . . . . . . . 10 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2524fveq2d 6667 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
26 df-ov 7148 . . . . . . . 8 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2725, 26syl6eqr 2871 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
28 ioossre 12786 . . . . . . 7 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
2927, 28eqsstrdi 4018 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
3029ralrimiva 3179 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
31 iunss 4960 . . . . 5 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3230, 31sylibr 235 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3319, 32eqsstrd 4002 . . 3 (𝜑𝐾 ⊆ ℝ)
34 fzfid 13329 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3527fveq2d 6667 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
36 ovolfcl 23994 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
373, 14, 36syl2an 595 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
38 ovolioo 24096 . . . . . . 7 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
3937, 38syl 17 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4035, 39eqtrd 2853 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4137simp2d 1135 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
4237simp1d 1134 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
4341, 42resubcld 11056 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
4440, 43eqeltrd 2910 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4534, 44fsumrecl 15079 . . 3 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4619fveq2d 6667 . . . 4 (𝜑 → (vol*‘𝐾) = (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
4729, 44jca 512 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
4847ralrimiva 3179 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
49 ovolfiniun 24029 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5034, 48, 49syl2anc 584 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5146, 50eqbrtrd 5079 . . 3 (𝜑 → (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
52 ovollecl 24011 . . 3 ((𝐾 ⊆ ℝ ∧ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ ∧ (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗)))) → (vol*‘𝐾) ∈ ℝ)
5333, 45, 51, 52syl3anc 1363 . 2 (𝜑 → (vol*‘𝐾) ∈ ℝ)
5419, 53jca 512 1 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  cin 3932  wss 3933  𝒫 cpw 4535  cop 4563   cuni 4830   ciun 4910  Disj wdisj 5022   class class class wbr 5057   × cxp 5546  ran crn 5549  cima 5551  ccom 5552  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  Fincfn 8497  supcsup 8892  cr 10524  1c1 10526   + caddc 10528  *cxr 10662   < clt 10663  cle 10664  cmin 10858  cn 11626  +crp 12377  (,)cioo 12726  ...cfz 12880  seqcseq 13357  abscabs 14581  Σcsu 15030  vol*covol 23990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834  df-sum 15031  df-rest 16684  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482  df-cmp 21923  df-ovol 23992  df-vol 23993
This theorem is referenced by:  uniioombllem3  24113
  Copyright terms: Public domain W3C validator