MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Visualization version   GIF version

Theorem uniioombllem3a 25638
Description: Lemma for uniioombl 25643. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3a (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Distinct variable groups:   𝑥,𝑗,𝐹   𝑗,𝐺,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑗,𝑥   𝑗,𝑀,𝑥   𝜑,𝑗,𝑥   𝑇,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑗)   𝐸(𝑥,𝑗)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2 ioof 13507 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 4259 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 rexpssxrxp 11335 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
64, 5sstri 4018 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
7 fss 6763 . . . . . . 7 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
83, 6, 7sylancl 585 . . . . . 6 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
9 fco 6771 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
102, 8, 9sylancr 586 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
11 ffun 6750 . . . . 5 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
12 funiunfv 7285 . . . . 5 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
1310, 11, 123syl 18 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
14 elfznn 13613 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
15 fvco3 7021 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
163, 14, 15syl2an 595 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
1716iuneq2dv 5039 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
1813, 17eqtr3d 2782 . . 3 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
191, 18eqtrid 2792 . 2 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
20 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
213, 14, 20syl2an 595 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
2221elin2d 4228 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
23 1st2nd2 8069 . . . . . . . . . 10 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2524fveq2d 6924 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
26 df-ov 7451 . . . . . . . 8 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2725, 26eqtr4di 2798 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
28 ioossre 13468 . . . . . . 7 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
2927, 28eqsstrdi 4063 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
3029ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
31 iunss 5068 . . . . 5 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3230, 31sylibr 234 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3319, 32eqsstrd 4047 . . 3 (𝜑𝐾 ⊆ ℝ)
34 fzfid 14024 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3527fveq2d 6924 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
36 ovolfcl 25520 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
373, 14, 36syl2an 595 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
38 ovolioo 25622 . . . . . . 7 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
3937, 38syl 17 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4035, 39eqtrd 2780 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4137simp2d 1143 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
4237simp1d 1142 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
4341, 42resubcld 11718 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
4440, 43eqeltrd 2844 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4534, 44fsumrecl 15782 . . 3 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4619fveq2d 6924 . . . 4 (𝜑 → (vol*‘𝐾) = (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
4729, 44jca 511 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
4847ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
49 ovolfiniun 25555 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5034, 48, 49syl2anc 583 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5146, 50eqbrtrd 5188 . . 3 (𝜑 → (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
52 ovollecl 25537 . . 3 ((𝐾 ⊆ ℝ ∧ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ ∧ (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗)))) → (vol*‘𝐾) ∈ ℝ)
5333, 45, 51, 52syl3anc 1371 . 2 (𝜑 → (vol*‘𝐾) ∈ ℝ)
5419, 53jca 511 1 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cin 3975  wss 3976  𝒫 cpw 4622  cop 4654   cuni 4931   ciun 5015  Disj wdisj 5133   class class class wbr 5166   × cxp 5698  ran crn 5701  cima 5703  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Fincfn 9003  supcsup 9509  cr 11183  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  +crp 13057  (,)cioo 13407  ...cfz 13567  seqcseq 14052  abscabs 15283  Σcsu 15734  vol*covol 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519
This theorem is referenced by:  uniioombllem3  25639
  Copyright terms: Public domain W3C validator