MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Visualization version   GIF version

Theorem uniioombllem3a 25101
Description: Lemma for uniioombl 25106. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (πœ‘ β†’ 𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
uniioombl.2 (πœ‘ β†’ Disj π‘₯ ∈ β„• ((,)β€˜(πΉβ€˜π‘₯)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ βˆ’ ) ∘ 𝐹))
uniioombl.a 𝐴 = βˆͺ ran ((,) ∘ 𝐹)
uniioombl.e (πœ‘ β†’ (vol*β€˜πΈ) ∈ ℝ)
uniioombl.c (πœ‘ β†’ 𝐢 ∈ ℝ+)
uniioombl.g (πœ‘ β†’ 𝐺:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
uniioombl.s (πœ‘ β†’ 𝐸 βŠ† βˆͺ ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ βˆ’ ) ∘ 𝐺))
uniioombl.v (πœ‘ β†’ sup(ran 𝑇, ℝ*, < ) ≀ ((vol*β€˜πΈ) + 𝐢))
uniioombl.m (πœ‘ β†’ 𝑀 ∈ β„•)
uniioombl.m2 (πœ‘ β†’ (absβ€˜((π‘‡β€˜π‘€) βˆ’ sup(ran 𝑇, ℝ*, < ))) < 𝐢)
uniioombl.k 𝐾 = βˆͺ (((,) ∘ 𝐺) β€œ (1...𝑀))
Assertion
Ref Expression
uniioombllem3a (πœ‘ β†’ (𝐾 = βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)) ∧ (vol*β€˜πΎ) ∈ ℝ))
Distinct variable groups:   π‘₯,𝑗,𝐹   𝑗,𝐺,π‘₯   𝑗,𝐾,π‘₯   𝐴,𝑗,π‘₯   𝐢,𝑗,π‘₯   𝑗,𝑀,π‘₯   πœ‘,𝑗,π‘₯   𝑇,𝑗,π‘₯
Allowed substitution hints:   𝑆(π‘₯,𝑗)   𝐸(π‘₯,𝑗)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3 𝐾 = βˆͺ (((,) ∘ 𝐺) β€œ (1...𝑀))
2 ioof 13424 . . . . . 6 (,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ
3 uniioombl.g . . . . . . 7 (πœ‘ β†’ 𝐺:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
4 inss2 4230 . . . . . . . 8 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ Γ— ℝ)
5 rexpssxrxp 11259 . . . . . . . 8 (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*)
64, 5sstri 3992 . . . . . . 7 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ* Γ— ℝ*)
7 fss 6735 . . . . . . 7 ((𝐺:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ* Γ— ℝ*)) β†’ 𝐺:β„•βŸΆ(ℝ* Γ— ℝ*))
83, 6, 7sylancl 587 . . . . . 6 (πœ‘ β†’ 𝐺:β„•βŸΆ(ℝ* Γ— ℝ*))
9 fco 6742 . . . . . 6 (((,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ ∧ 𝐺:β„•βŸΆ(ℝ* Γ— ℝ*)) β†’ ((,) ∘ 𝐺):β„•βŸΆπ’« ℝ)
102, 8, 9sylancr 588 . . . . 5 (πœ‘ β†’ ((,) ∘ 𝐺):β„•βŸΆπ’« ℝ)
11 ffun 6721 . . . . 5 (((,) ∘ 𝐺):β„•βŸΆπ’« ℝ β†’ Fun ((,) ∘ 𝐺))
12 funiunfv 7247 . . . . 5 (Fun ((,) ∘ 𝐺) β†’ βˆͺ 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)β€˜π‘—) = βˆͺ (((,) ∘ 𝐺) β€œ (1...𝑀)))
1310, 11, 123syl 18 . . . 4 (πœ‘ β†’ βˆͺ 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)β€˜π‘—) = βˆͺ (((,) ∘ 𝐺) β€œ (1...𝑀)))
14 elfznn 13530 . . . . . 6 (𝑗 ∈ (1...𝑀) β†’ 𝑗 ∈ β„•)
15 fvco3 6991 . . . . . 6 ((𝐺:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑗 ∈ β„•) β†’ (((,) ∘ 𝐺)β€˜π‘—) = ((,)β€˜(πΊβ€˜π‘—)))
163, 14, 15syl2an 597 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (((,) ∘ 𝐺)β€˜π‘—) = ((,)β€˜(πΊβ€˜π‘—)))
1716iuneq2dv 5022 . . . 4 (πœ‘ β†’ βˆͺ 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)β€˜π‘—) = βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)))
1813, 17eqtr3d 2775 . . 3 (πœ‘ β†’ βˆͺ (((,) ∘ 𝐺) β€œ (1...𝑀)) = βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)))
191, 18eqtrid 2785 . 2 (πœ‘ β†’ 𝐾 = βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)))
20 ffvelcdm 7084 . . . . . . . . . . . 12 ((𝐺:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑗 ∈ β„•) β†’ (πΊβ€˜π‘—) ∈ ( ≀ ∩ (ℝ Γ— ℝ)))
213, 14, 20syl2an 597 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (πΊβ€˜π‘—) ∈ ( ≀ ∩ (ℝ Γ— ℝ)))
2221elin2d 4200 . . . . . . . . . 10 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (πΊβ€˜π‘—) ∈ (ℝ Γ— ℝ))
23 1st2nd2 8014 . . . . . . . . . 10 ((πΊβ€˜π‘—) ∈ (ℝ Γ— ℝ) β†’ (πΊβ€˜π‘—) = ⟨(1st β€˜(πΊβ€˜π‘—)), (2nd β€˜(πΊβ€˜π‘—))⟩)
2422, 23syl 17 . . . . . . . . 9 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (πΊβ€˜π‘—) = ⟨(1st β€˜(πΊβ€˜π‘—)), (2nd β€˜(πΊβ€˜π‘—))⟩)
2524fveq2d 6896 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ ((,)β€˜(πΊβ€˜π‘—)) = ((,)β€˜βŸ¨(1st β€˜(πΊβ€˜π‘—)), (2nd β€˜(πΊβ€˜π‘—))⟩))
26 df-ov 7412 . . . . . . . 8 ((1st β€˜(πΊβ€˜π‘—))(,)(2nd β€˜(πΊβ€˜π‘—))) = ((,)β€˜βŸ¨(1st β€˜(πΊβ€˜π‘—)), (2nd β€˜(πΊβ€˜π‘—))⟩)
2725, 26eqtr4di 2791 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ ((,)β€˜(πΊβ€˜π‘—)) = ((1st β€˜(πΊβ€˜π‘—))(,)(2nd β€˜(πΊβ€˜π‘—))))
28 ioossre 13385 . . . . . . 7 ((1st β€˜(πΊβ€˜π‘—))(,)(2nd β€˜(πΊβ€˜π‘—))) βŠ† ℝ
2927, 28eqsstrdi 4037 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ ((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ)
3029ralrimiva 3147 . . . . 5 (πœ‘ β†’ βˆ€π‘— ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ)
31 iunss 5049 . . . . 5 (βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ ↔ βˆ€π‘— ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ)
3230, 31sylibr 233 . . . 4 (πœ‘ β†’ βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ)
3319, 32eqsstrd 4021 . . 3 (πœ‘ β†’ 𝐾 βŠ† ℝ)
34 fzfid 13938 . . . 4 (πœ‘ β†’ (1...𝑀) ∈ Fin)
3527fveq2d 6896 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (vol*β€˜((,)β€˜(πΊβ€˜π‘—))) = (vol*β€˜((1st β€˜(πΊβ€˜π‘—))(,)(2nd β€˜(πΊβ€˜π‘—)))))
36 ovolfcl 24983 . . . . . . . 8 ((𝐺:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑗 ∈ β„•) β†’ ((1st β€˜(πΊβ€˜π‘—)) ∈ ℝ ∧ (2nd β€˜(πΊβ€˜π‘—)) ∈ ℝ ∧ (1st β€˜(πΊβ€˜π‘—)) ≀ (2nd β€˜(πΊβ€˜π‘—))))
373, 14, 36syl2an 597 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ ((1st β€˜(πΊβ€˜π‘—)) ∈ ℝ ∧ (2nd β€˜(πΊβ€˜π‘—)) ∈ ℝ ∧ (1st β€˜(πΊβ€˜π‘—)) ≀ (2nd β€˜(πΊβ€˜π‘—))))
38 ovolioo 25085 . . . . . . 7 (((1st β€˜(πΊβ€˜π‘—)) ∈ ℝ ∧ (2nd β€˜(πΊβ€˜π‘—)) ∈ ℝ ∧ (1st β€˜(πΊβ€˜π‘—)) ≀ (2nd β€˜(πΊβ€˜π‘—))) β†’ (vol*β€˜((1st β€˜(πΊβ€˜π‘—))(,)(2nd β€˜(πΊβ€˜π‘—)))) = ((2nd β€˜(πΊβ€˜π‘—)) βˆ’ (1st β€˜(πΊβ€˜π‘—))))
3937, 38syl 17 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (vol*β€˜((1st β€˜(πΊβ€˜π‘—))(,)(2nd β€˜(πΊβ€˜π‘—)))) = ((2nd β€˜(πΊβ€˜π‘—)) βˆ’ (1st β€˜(πΊβ€˜π‘—))))
4035, 39eqtrd 2773 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (vol*β€˜((,)β€˜(πΊβ€˜π‘—))) = ((2nd β€˜(πΊβ€˜π‘—)) βˆ’ (1st β€˜(πΊβ€˜π‘—))))
4137simp2d 1144 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (2nd β€˜(πΊβ€˜π‘—)) ∈ ℝ)
4237simp1d 1143 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (1st β€˜(πΊβ€˜π‘—)) ∈ ℝ)
4341, 42resubcld 11642 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ ((2nd β€˜(πΊβ€˜π‘—)) βˆ’ (1st β€˜(πΊβ€˜π‘—))) ∈ ℝ)
4440, 43eqeltrd 2834 . . . 4 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (vol*β€˜((,)β€˜(πΊβ€˜π‘—))) ∈ ℝ)
4534, 44fsumrecl 15680 . . 3 (πœ‘ β†’ Σ𝑗 ∈ (1...𝑀)(vol*β€˜((,)β€˜(πΊβ€˜π‘—))) ∈ ℝ)
4619fveq2d 6896 . . . 4 (πœ‘ β†’ (vol*β€˜πΎ) = (vol*β€˜βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—))))
4729, 44jca 513 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ (1...𝑀)) β†’ (((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ ∧ (vol*β€˜((,)β€˜(πΊβ€˜π‘—))) ∈ ℝ))
4847ralrimiva 3147 . . . . 5 (πœ‘ β†’ βˆ€π‘— ∈ (1...𝑀)(((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ ∧ (vol*β€˜((,)β€˜(πΊβ€˜π‘—))) ∈ ℝ))
49 ovolfiniun 25018 . . . . 5 (((1...𝑀) ∈ Fin ∧ βˆ€π‘— ∈ (1...𝑀)(((,)β€˜(πΊβ€˜π‘—)) βŠ† ℝ ∧ (vol*β€˜((,)β€˜(πΊβ€˜π‘—))) ∈ ℝ)) β†’ (vol*β€˜βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—))) ≀ Σ𝑗 ∈ (1...𝑀)(vol*β€˜((,)β€˜(πΊβ€˜π‘—))))
5034, 48, 49syl2anc 585 . . . 4 (πœ‘ β†’ (vol*β€˜βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—))) ≀ Σ𝑗 ∈ (1...𝑀)(vol*β€˜((,)β€˜(πΊβ€˜π‘—))))
5146, 50eqbrtrd 5171 . . 3 (πœ‘ β†’ (vol*β€˜πΎ) ≀ Σ𝑗 ∈ (1...𝑀)(vol*β€˜((,)β€˜(πΊβ€˜π‘—))))
52 ovollecl 25000 . . 3 ((𝐾 βŠ† ℝ ∧ Σ𝑗 ∈ (1...𝑀)(vol*β€˜((,)β€˜(πΊβ€˜π‘—))) ∈ ℝ ∧ (vol*β€˜πΎ) ≀ Σ𝑗 ∈ (1...𝑀)(vol*β€˜((,)β€˜(πΊβ€˜π‘—)))) β†’ (vol*β€˜πΎ) ∈ ℝ)
5333, 45, 51, 52syl3anc 1372 . 2 (πœ‘ β†’ (vol*β€˜πΎ) ∈ ℝ)
5419, 53jca 513 1 (πœ‘ β†’ (𝐾 = βˆͺ 𝑗 ∈ (1...𝑀)((,)β€˜(πΊβ€˜π‘—)) ∧ (vol*β€˜πΎ) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  βŸ¨cop 4635  βˆͺ cuni 4909  βˆͺ ciun 4998  Disj wdisj 5114   class class class wbr 5149   Γ— cxp 5675  ran crn 5678   β€œ cima 5680   ∘ ccom 5681  Fun wfun 6538  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  Fincfn 8939  supcsup 9435  β„cr 11109  1c1 11111   + caddc 11113  β„*cxr 11247   < clt 11248   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  β„+crp 12974  (,)cioo 13324  ...cfz 13484  seqcseq 13966  abscabs 15181  Ξ£csu 15632  vol*covol 24979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-rest 17368  df-topgen 17389  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-top 22396  df-topon 22413  df-bases 22449  df-cmp 22891  df-ovol 24981  df-vol 24982
This theorem is referenced by:  uniioombllem3  25102
  Copyright terms: Public domain W3C validator