MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem3a Structured version   Visualization version   GIF version

Theorem uniioombllem3a 23904
Description: Lemma for uniioombl 23909. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
uniioombl.a 𝐴 = ran ((,) ∘ 𝐹)
uniioombl.e (𝜑 → (vol*‘𝐸) ∈ ℝ)
uniioombl.c (𝜑𝐶 ∈ ℝ+)
uniioombl.g (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.s (𝜑𝐸 ran ((,) ∘ 𝐺))
uniioombl.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
uniioombl.v (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
uniioombl.m (𝜑𝑀 ∈ ℕ)
uniioombl.m2 (𝜑 → (abs‘((𝑇𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶)
uniioombl.k 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
Assertion
Ref Expression
uniioombllem3a (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Distinct variable groups:   𝑥,𝑗,𝐹   𝑗,𝐺,𝑥   𝑗,𝐾,𝑥   𝐴,𝑗,𝑥   𝐶,𝑗,𝑥   𝑗,𝑀,𝑥   𝜑,𝑗,𝑥   𝑇,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑗)   𝐸(𝑥,𝑗)

Proof of Theorem uniioombllem3a
StepHypRef Expression
1 uniioombl.k . . 3 𝐾 = (((,) ∘ 𝐺) “ (1...𝑀))
2 ioof 12650 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 uniioombl.g . . . . . . 7 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4 inss2 4088 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
5 rexpssxrxp 10484 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
64, 5sstri 3862 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
7 fss 6355 . . . . . . 7 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
83, 6, 7sylancl 578 . . . . . 6 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
9 fco 6359 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
102, 8, 9sylancr 579 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
11 ffun 6345 . . . . 5 (((,) ∘ 𝐺):ℕ⟶𝒫 ℝ → Fun ((,) ∘ 𝐺))
12 funiunfv 6831 . . . . 5 (Fun ((,) ∘ 𝐺) → 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
1310, 11, 123syl 18 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = (((,) ∘ 𝐺) “ (1...𝑀)))
14 elfznn 12751 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℕ)
15 fvco3 6587 . . . . . 6 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
163, 14, 15syl2an 587 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (((,) ∘ 𝐺)‘𝑗) = ((,)‘(𝐺𝑗)))
1716iuneq2dv 4812 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)(((,) ∘ 𝐺)‘𝑗) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
1813, 17eqtr3d 2811 . . 3 (𝜑 (((,) ∘ 𝐺) “ (1...𝑀)) = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
191, 18syl5eq 2821 . 2 (𝜑𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)))
20 ffvelrn 6673 . . . . . . . . . . . 12 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
213, 14, 20syl2an 587 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ ( ≤ ∩ (ℝ × ℝ)))
2221elin2d 4059 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) ∈ (ℝ × ℝ))
23 1st2nd2 7539 . . . . . . . . . 10 ((𝐺𝑗) ∈ (ℝ × ℝ) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2422, 23syl 17 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐺𝑗) = ⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2524fveq2d 6501 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩))
26 df-ov 6978 . . . . . . . 8 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) = ((,)‘⟨(1st ‘(𝐺𝑗)), (2nd ‘(𝐺𝑗))⟩)
2725, 26syl6eqr 2827 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) = ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))))
28 ioossre 12613 . . . . . . 7 ((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗))) ⊆ ℝ
2927, 28syl6eqss 3906 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → ((,)‘(𝐺𝑗)) ⊆ ℝ)
3029ralrimiva 3127 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
31 iunss 4832 . . . . 5 ( 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ ↔ ∀𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3230, 31sylibr 226 . . . 4 (𝜑 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ⊆ ℝ)
3319, 32eqsstrd 3890 . . 3 (𝜑𝐾 ⊆ ℝ)
34 fzfid 13155 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3527fveq2d 6501 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))))
36 ovolfcl 23786 . . . . . . . 8 ((𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
373, 14, 36syl2an 587 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))))
38 ovolioo 23888 . . . . . . 7 (((1st ‘(𝐺𝑗)) ∈ ℝ ∧ (2nd ‘(𝐺𝑗)) ∈ ℝ ∧ (1st ‘(𝐺𝑗)) ≤ (2nd ‘(𝐺𝑗))) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
3937, 38syl 17 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((1st ‘(𝐺𝑗))(,)(2nd ‘(𝐺𝑗)))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4035, 39eqtrd 2809 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) = ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))))
4137simp2d 1124 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (2nd ‘(𝐺𝑗)) ∈ ℝ)
4237simp1d 1123 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (1st ‘(𝐺𝑗)) ∈ ℝ)
4341, 42resubcld 10868 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → ((2nd ‘(𝐺𝑗)) − (1st ‘(𝐺𝑗))) ∈ ℝ)
4440, 43eqeltrd 2861 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4534, 44fsumrecl 14950 . . 3 (𝜑 → Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)
4619fveq2d 6501 . . . 4 (𝜑 → (vol*‘𝐾) = (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))))
4729, 44jca 504 . . . . . 6 ((𝜑𝑗 ∈ (1...𝑀)) → (((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
4847ralrimiva 3127 . . . . 5 (𝜑 → ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ))
49 ovolfiniun 23821 . . . . 5 (((1...𝑀) ∈ Fin ∧ ∀𝑗 ∈ (1...𝑀)(((,)‘(𝐺𝑗)) ⊆ ℝ ∧ (vol*‘((,)‘(𝐺𝑗))) ∈ ℝ)) → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5034, 48, 49syl2anc 576 . . . 4 (𝜑 → (vol*‘ 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗))) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
5146, 50eqbrtrd 4948 . . 3 (𝜑 → (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))))
52 ovollecl 23803 . . 3 ((𝐾 ⊆ ℝ ∧ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗))) ∈ ℝ ∧ (vol*‘𝐾) ≤ Σ𝑗 ∈ (1...𝑀)(vol*‘((,)‘(𝐺𝑗)))) → (vol*‘𝐾) ∈ ℝ)
5333, 45, 51, 52syl3anc 1352 . 2 (𝜑 → (vol*‘𝐾) ∈ ℝ)
5419, 53jca 504 1 (𝜑 → (𝐾 = 𝑗 ∈ (1...𝑀)((,)‘(𝐺𝑗)) ∧ (vol*‘𝐾) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3083  cin 3823  wss 3824  𝒫 cpw 4417  cop 4442   cuni 4709   ciun 4789  Disj wdisj 4894   class class class wbr 4926   × cxp 5402  ran crn 5405  cima 5407  ccom 5408  Fun wfun 6180  wf 6182  cfv 6186  (class class class)co 6975  1st c1st 7498  2nd c2nd 7499  Fincfn 8305  supcsup 8698  cr 10333  1c1 10335   + caddc 10337  *cxr 10472   < clt 10473  cle 10474  cmin 10669  cn 11438  +crp 12203  (,)cioo 12553  ...cfz 12707  seqcseq 13183  abscabs 14453  Σcsu 14902  vol*covol 23782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-fi 8669  df-sup 8700  df-inf 8701  df-oi 8768  df-dju 9123  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-q 12162  df-rp 12204  df-xneg 12323  df-xadd 12324  df-xmul 12325  df-ioo 12557  df-ico 12559  df-icc 12560  df-fz 12708  df-fzo 12849  df-fl 12976  df-seq 13184  df-exp 13244  df-hash 13505  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-clim 14705  df-rlim 14706  df-sum 14903  df-rest 16551  df-topgen 16572  df-psmet 20255  df-xmet 20256  df-met 20257  df-bl 20258  df-mopn 20259  df-top 21222  df-topon 21239  df-bases 21274  df-cmp 21715  df-ovol 23784  df-vol 23785
This theorem is referenced by:  uniioombllem3  23905
  Copyright terms: Public domain W3C validator